${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}}$ INSPIRE search

$\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit K}}})/[\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}}{{\mathit \pi}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}})\rbrack{}$
$\Gamma_{2}/(\Gamma_{1}$+ $\Gamma_{2}$+ $\Gamma_{3}$+ $\Gamma_{5}$)
B099R2
$\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\overline{\mathit K}}})/[\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}}{{\mathit \pi}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}})\rbrack{}$
$\Gamma_{3}/(\Gamma_{1}$+ $\Gamma_{2}$+ $\Gamma_{3}$+ $\Gamma_{5}$)
B099R3
$\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}})/[\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}}{{\mathit \pi}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}})\rbrack{}$
$\Gamma_{5}/(\Gamma_{1}$+ $\Gamma_{2}$+ $\Gamma_{3}$+ $\Gamma_{5}$)
B099R4
$\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}}{{\mathit \pi}})/[\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}}{{\mathit \pi}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\overline{\mathit K}}})$+ $\Gamma($ ${{\mathit \Xi}{(2500)}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}})\rbrack{}$
$\Gamma_{1}/(\Gamma_{1}$+ $\Gamma_{2}$+ $\Gamma_{3}$+ $\Gamma_{5}$)
B099R1