$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit p}} {{\mathit \mu}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.8\times 10^{-6}$
CL=95.0%
|
|
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit p}} {{\mathit e}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.8\times 10^{-6}$
CL=95.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.8\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2.0\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3.0\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit p}} {{\mathit e}^{-}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3.0\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.8\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<4.0\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<4.3\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \Lambda}} {{\mathit \pi}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<4.7\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{0}} {{\mathit \eta}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2.7\times 10^{-5}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3.3\times 10^{-5}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \eta}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<8.9\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{0}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.5\times 10^{-5}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\overline{\mathit p}}} {{\mathit \gamma}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3.5\times 10^{-6}$
CL=90.0%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\overline{\mathit \Sigma}}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.3\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \Sigma}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.7\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\overline{\mathit \Lambda}}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6.5\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \Lambda}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.1\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\overline{\mathit p}}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6.3\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<5.1\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6.9\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit p}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<5.5\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<8\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\overline{\mathit \Lambda}}^{0}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \Lambda}^{0}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3.2\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \Lambda}^{0}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6\times 10^{-8}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2.6\times 10^{-9}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \Lambda}_{{{c}}}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<4\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \Lambda}_{{{c}}}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.4\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit B}_{{{s}}}^{0}} \rightarrow {{\mathit p}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.21\times 10^{-8}$
CL=90.0%
|
|
${{\mathit p}}$ mean life
|
$>9 \times 10^{29}$
years
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit \mu}^{+}} {{\mathit K}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$>26$ (${{\mathit n}}$), $>4500$ (${{\mathit p}}$)
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit e}^{+}} {{\mathit K}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$>17$ (${{\mathit n}}$), $>1000$ (${{\mathit p}}$)
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \pi}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$>3500$ (${{\mathit n}}$), $>16000$ (${{\mathit p}}$)
CL=90.0%
|
|
A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.
|
$\Gamma\mathrm {( {{\mathit N}} \rightarrow {{\mathit e}^{+}} {{\mathit \pi}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$>5300$ (${{\mathit n}}$), $>24000$ (${{\mathit p}}$)
CL=90.0%
|
|
Mean ${{\mathit n}}{{\overline{\mathit n}}}$-oscillation time (free ${{\mathit n}}$)
|
$>8.6 \times 10^{7}$
s
CL=90.0%
|
|
Mean ${{\mathit n}}{{\overline{\mathit n}}}$-oscillation time (bound ${{\mathit n}}$)
|
[1]
|
$>4.7 \times 10^{8}$
s
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\overline{\mathit p}}} {{\mathit \pi}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<9\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}_S^0} {{\mathit \nu}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2\times 10^{-5}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{-}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<3\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{-}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<4\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<6\times 10^{-7}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}} {{\mathit e}^{+}} {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<1.6\times 10^{-5}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit \mu}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<9.4\times 10^{-6}$
CL=90.0%
|
|
$\Gamma\mathrm {( {{\mathit \Lambda}_{{{c}}}^{+}} \rightarrow {{\overline{\mathit p}}}2 {{\mathit e}^{+}})}$ $/$ $\Gamma\mathrm {(total)}$
|
$<2.7\times 10^{-6}$
CL=90.0%
|
|
|
[1] |
There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
|
|