$({\mathit m}_{{{\mathit W}^{+}}}{\mathit m}_{{{\mathit W}^{-}}})/{\mathit m}_{\mathrm {average}}$
|
($-3.7$ $\pm3.5$) $ \times 10^{-4}$
|
|
$({\mathit m}_{{{\mathit e}^{+}}}{\mathit m}_{{{\mathit e}^{-}}})/{\mathit m}_{\mathrm {average}}$
|
$<8 \times 10^{-9}$
CL=90.0%
|
|
$\vert \mathit q_{{{\mathit e}^{+}}}~+~\mathit q_{{{\mathit e}^{-}}}\vert /{{\mathit e}}$
|
$<4 \times 10^{-8}$
|
|
(${\mathit g}_{{{\mathit e}^{+}}}{\mathit g}_{{{\mathit e}^{-}}}$) $/$ $\mathit g_{{\mathrm {average}}}$
|
($-0.5$ $\pm2.1$) $ \times 10^{-12}$
|
|
$({\mathit \tau}_{{{\mathit \mu}^{+}}}{\mathit \tau}_{{{\mathit \mu}^{-}}})/{\mathit \tau}_{\mathrm {average}}$
|
($2$ $\pm8$) $ \times 10^{-5}$
|
|
$({\mathit g}_{{{\mathit \mu}^{+}}}{\mathit g}_{{{\mathit \mu}^{-}}})/{\mathit g}_{average}$
|
($-1.1$ $\pm1.2$) $ \times 10^{-9}$
|
|
(${\mathit m}_{{{\mathit \tau}^{+}}}{\mathit m}_{{{\mathit \tau}^{-}}})/\mathit m_{{\mathrm {average}}}$
|
$<2.8 \times 10^{-4}$
CL=90.0%
|
|
$\langle \Delta {{\mathit m}^{2}}_{\mathrm {21}}−\Delta {{\overline{\mathit m}}}{}^{2}_{21}\rangle $ in neutrino mixing
|
$<1.1 \times 10^{-4}$
eV${}^{2}$
CL=99.7%
|
|
$\langle \Delta {{\mathit m}^{2}}_{\mathrm {32}}−\Delta {{\overline{\mathit m}}}{}^{2}_{32}\rangle $ in neutrino mixing
|
($-1.2$ $\pm2.5$) $ \times 10^{-4}$
eV${}^{2}$
|
|
${\mathit m}_{{{\mathit t}}}$ $−$ ${\mathit m}_{{{\overline{\mathit t}}}}$
|
$-0.15$ $\pm0.20$
GeV
(S = 1.1)
|
|
$({\mathit m}_{{{\mathit \pi}^{+}}}{\mathit m}_{{{\mathit \pi}^{-}}})/{\mathit m}_{\mathrm {average}}$
|
($2$ $\pm5$) $ \times 10^{-4}$
|
|
$({\mathit \tau}_{{{\mathit \pi}^{+}}}{\mathit \tau}_{{{\mathit \pi}^{-}}})/{\mathit \tau}_{\mathrm {average}}$
|
($6$ $\pm7$) $ \times 10^{-4}$
|
|
$({\mathit m}_{{{\mathit K}^{+}}}{\mathit m}_{{{\mathit K}^{-}}})/{\mathit m}_{\mathrm {average}}$
|
($-0.6$ $\pm1.8$) $ \times 10^{-4}$
|
|
$({\mathit \tau}_{{{\mathit K}^{+}}}{\mathit \tau}_{{{\mathit K}^{-}}})/{\mathit \tau}_{\mathrm {average}}$
|
($1.0$ $\pm0.9$) $ \times 10^{-3}$
(S = 1.2)
|
|
${{\mathit K}^{\pm}}$ $\rightarrow$ ${{\mathit \mu}^{\pm}}{{\mathit \nu}_{{{\mu}}}}$ rate difference/sum
|
$-0.0027$ $\pm0.0021$
|
|
${{\mathit K}^{\pm}}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{{\mathit \pi}^{0}}$ rate difference/sum
|
[1]
|
$0.004$ $\pm0.006$
|
|
${{\mathit \delta}}$ in ${{\mathit K}^{0}}\text{-}{{\overline{\mathit K}}^{0}}$ mixing
|
real part of $\delta $
|
($2.5$ $\pm2.3$) $ \times 10^{-4}$
|
|
imaginary part of $\delta $
|
($-1.5$ $\pm1.6$) $ \times 10^{-5}$
|
|
Re(y), ${{\mathit K}_{{{{e3}}}}}$ parameter
|
$0.0004$ $\pm0.0025$
|
|
Re(x$_{-}$), ${{\mathit K}_{{{e3}}}}$ parameter
|
$-0.0029$ $\pm0.0020$
|
|
$\vert{}{\mathit m}_{{{\mathit K}^{0}}}{\mathit m}_{{{\overline{\mathit K}}^{0}}}\vert{}/{\mathit m}_{\mathrm {average}}$
|
[2]
|
$<6 \times 10^{-19}$
CL=90.0%
|
|
(${\Gamma}_{{\mathit K}^{0}}−{\Gamma}_{{\overline{\mathit K}}^{0}})/{\mathit m}_{{\mathrm {average}}}$
|
($8$ $\pm8$) $ \times 10^{-18}$
|
|
phase difference $\phi _{00}$ $−$ $\phi _{+−}$
|
$0.34$ $\pm0.32$
$^\circ{}$
|
|
Re(${2\over 3}\eta _{+−}$ $+$ ${1\over 3}\eta _{00})−{\mathit A_{L}\over 2}$
|
($-0.3$ $\pm3.5$) $ \times 10^{-5}$
|
|
$\mathit A_{CPT}$( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$)
|
$-1.46 \times 10^{-4}\text{ to }6.6 \times 10^{-5} $
CL=95.0%
|
|
$\Delta {{\mathit S}_{{{CPT}}}^{+}}$ (S${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ S${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$)
|
$0.16$ $\pm0.23$
|
|
$\Delta {{\mathit S}_{{{CPT}}}^{-}}$ (S${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ S${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$)
|
$-0.03$ $\pm0.14$
|
|
$\Delta {{\mathit C}_{{{CPT}}}^{+}}$ (C${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ C${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$)
|
$0.14$ $\pm0.17$
|
|
$\Delta {{\mathit C}_{{{CPT}}}^{-}}$ (C${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ C${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$)
|
$0.03$ $\pm0.14$
|
|
$\vert {\mathit m}_{{{\mathit p}}}−{\mathit m}_{{{\overline{\mathit p}}}}\vert /{\mathit m}_{{{\mathit p}}}$
|
[3]
|
$<7 \times 10^{-10}$
CL=90.0%
|
|
($\vert {\mathit q_{{{\overline{\mathit p}}}}\over {\mathit m}_{{{\overline{\mathit p}}}}}\vert -{\mathit q_{p}\over {\mathit m}_{{{\mathit p}}}})/{\mathit q_{{{\mathit p}}}\over {\mathit m}_{{{\mathit p}}}}$
|
($0.3$ $\pm1.6$) $ \times 10^{-11}$
|
|
$\vert \mathit q_{{{\mathit p}}}~+~\mathit q_{{{\overline{\mathit p}}}}\vert /{{\mathit e}}$
|
[3]
|
$<7 \times 10^{-10}$
CL=90.0%
|
|
(${\mathit \mu}_{{{\mathit p}}}$ $+$ ${\mathit \mu}_{{{\overline{\mathit p}}}}$) $/$ $\mu _{{{\mathit p}}}$
|
($2$ $\pm4$) $ \times 10^{-9}$
|
|
(${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\overline{\mathit n}}}}$ )/ ${\mathit m}_{{{\mathit n}}}$
|
($9$ $\pm5$) $ \times 10^{-5}$
|
|
(${\mathit m}_{{{\mathit \Lambda}}}{\mathit m}_{{{\overline{\mathit \Lambda}}}}$) $/$ ${\mathit m}_{{{\mathit \Lambda}}}$
|
($-0.1$ $\pm1.1$) $ \times 10^{-5}$
(S = 1.6)
|
|
(${\mathit \tau}_{{{\mathit \Lambda}}}{\mathit \tau}_{{{\overline{\mathit \Lambda}}}}$) $/$ ${\mathit \tau}_{{{\mathit \Lambda}}}$
|
$0.0009$ $\pm0.0032$
|
|
(${\mathit \tau}_{{{\mathit \Sigma}^{+}}}{\mathit \tau}_{{{\overline{\mathit \Sigma}}^{-}}}$) $/$ ${\mathit \tau}_{{{\mathit \Sigma}^{+}}}$
|
$-0.0006$ $\pm0.0012$
|
|
(${\mathit \mu}_{{{\mathit \Sigma}^{+}}}$ $+$ ${\mathit \mu}_{{{\overline{\mathit \Sigma}}^{-}}}$) $/$ ${\mathit \mu}_{{{\mathit \Sigma}^{+}}}$
|
$0.014$ $\pm0.015$
|
|
(${\mathit m}_{{{\mathit \Xi}^{-}}}{\mathit m}_{{{\overline{\mathit \Xi}}^{+}}}$) $/$ ${\mathit m}_{{{\mathit \Xi}^{-}}}$
|
($-3$ $\pm9$) $ \times 10^{-5}$
|
|
(${\mathit \tau}_{{{\mathit \Xi}^{-}}}{\mathit \tau}_{{{\overline{\mathit \Xi}}^{+}}}$) $/$ ${\mathit \tau}_{{{\mathit \Xi}^{-}}}$
|
$-0.01$ $\pm0.07$
|
|
(${\mathit \mu}_{{{\mathit \Xi}^{-}}}$ + ${\mathit \mu}_{{{\overline{\mathit \Xi}}^{+}}}$) $/$ $\vert {\mathit \mu}_{{{\mathit \Xi}^{-}}}\vert $
|
$+0.01$ $\pm0.05$
|
|
(${\mathit m}_{{{\mathit \Omega}^{-}}}{\mathit m}_{{{\overline{\mathit \Omega}}^{+}}}$) $/$ ${\mathit m}_{{{\mathit \Omega}^{-}}}$
|
($-1$ $\pm8$) $ \times 10^{-5}$
|
|
(${\mathit \tau}_{{{\mathit \Omega}^{-}}}{\mathit \tau}_{{{\overline{\mathit \Omega}}^{+}}}$) $/$ ${\mathit \tau}_{{{\mathit \Omega}^{-}}}$
|
$0.00$ $\pm0.05$
|
|
|
[1] |
Neglecting photon channels. See, $\mathit e.g.$, A. Pais and S.B. Treiman, Phys. Rev. $\mathbf {D12}$, 2744 (1975).
|
|
[2] |
Derived from measured values of $\phi _{+−}$, $\phi _{{\mathrm {00}}}$, $\vert \eta \vert $, $\vert{}{\mathit m}_{{{\mathit K}_L^0} }{\mathit m}_{{{\mathit K}_S^0} }\vert{}$, and ${\mathit \tau}_{{{\mathit K}_S^0} }$, as described in the introduction to ``Tests of Conservation Laws.''
|
|
[3] |
The $\vert {\mathit m}_{{{\mathit p}}}−{\mathit m}_{{{\overline{\mathit p}}}}\vert /{\mathit m}_{{{\mathit p}}}$ and $\vert {{\mathit q}_{{{p}}}}$ + ${{\mathit q}}_{{{\overline{\mathit p}}}}\vert /{{\mathit e}}$ are not independent, and both use the more precise measurement of $\vert \mathit q_{{{\overline{\mathit p}}}}/{\mathit m}_{{{\overline{\mathit p}}}}\vert /(\mathit q_{{{\mathit p}}}/{\mathit m}_{{{\mathit p}}}$).
|
|