$
\bf{>0.96 \times 10^{30}}
$
|
$\bf{{{\mathit p}}}$
|
90 |
1 |
|
SNO+ |
$
\bf{>0.9 \times 10^{30}}
$
|
$\bf{{{\mathit n}}}$
|
90 |
2 |
|
SNO+ |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$
>1.3 \times 10^{24}
$
|
${{\mathit p}}$
|
90 |
3 |
|
HPGE |
$
>1.5 \times 10^{24}
$
|
${{\mathit n}}$
|
90 |
4 |
|
HPGE |
$
>3.6 \times 10^{29}
$
|
${{\mathit p}}$
|
90 |
5 |
|
SNO+ |
$
>2.5 \times 10^{29}
$
|
${{\mathit n}}$
|
90 |
5 |
|
SNO+ |
$
>5.8 \times 10^{29}
$
|
${{\mathit n}}$
|
90 |
6 |
|
KLND |
$
>2.1 \times 10^{29}
$
|
${{\mathit p}}$
|
90 |
5 |
|
SNO |
$
>1.9 \times 10^{29}
$
|
${{\mathit n}}$
|
90 |
5 |
|
SNO |
$
>1.8 \times 10^{25}
$
|
${{\mathit n}}$
|
90 |
7 |
|
BORX |
$
>1.1 \times 10^{26}
$
|
${{\mathit p}}$
|
90 |
7 |
|
BORX |
$
>3.5 \times 10^{28}
$
|
${{\mathit p}}$
|
90 |
8 |
|
|
$
>1 \times 10^{28}
$
|
${{\mathit p}}$
|
90 |
9 |
|
SNO |
$
>4 \times 10^{23}
$
|
${{\mathit p}}$
|
95 |
|
|
|
$
>1.9 \times 10^{24}
$
|
${{\mathit p}}$
|
90 |
10 |
|
DAMA |
$
>1.6 \times 10^{25}
$
|
${{\mathit p}}$, ${{\mathit n}}$
|
|
11, 12 |
|
|
$
>3 \times 10^{23}
$
|
${{\mathit p}}$
|
|
12 |
|
CNTR |
$
>3 \times 10^{23}
$
|
${{\mathit p}}$, ${{\mathit n}}$
|
|
13, 12 |
|
|
1
ALLEGA 2022 look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{15}\mathrm {N}{}^{*}$ following the disappearance of ${{\mathit p}}$ in ${}^{16}\mathrm {O}$.
|
2
ALLEGA 2022 look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{15}\mathrm {O}{}^{*}$ following the disappearance of ${{\mathit n}}$ in ${}^{16}\mathrm {O}$.
|
3
AGOSTINI 2024A look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{75}\mathrm {As}{}^{*}$ following the disappearance of ${{\mathit p}}$ in ${}^{76}\mathrm {Ge}$ (through the transition chain ${}^{76}\mathrm {Ge}$ $\rightarrow$ ${}^{75}\mathrm {Ga}$ $\rightarrow$ ${}^{75}\mathrm {Ge}$ $\rightarrow$ ${}^{75}\mathrm {As}$).
|
4
AGOSTINI 2024A look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{75}\mathrm {As}{}^{*}$ following the disappearance of ${{\mathit n}}$ in ${}^{76}\mathrm {Ge}$ (through the transition chain ${}^{76}\mathrm {Ge}$ $\rightarrow$ ${}^{75}\mathrm {Ge}$ $\rightarrow$ ${}^{75}\mathrm {As}$).
|
5
AHMED 2004 and ANDERSON 2019A look for ${{\mathit \gamma}}$ rays from the de-excitation of a residual ${}^{15}\mathrm {O}{}^{*}$ or ${}^{15}\mathrm {N}{}^{*}$ following the disappearance of a neutron or proton in ${}^{16}\mathrm {O}$.
|
6
ARAKI 2006 looks for signs of de-excitation of the residual nucleus after disappearance of a neutron from the $\mathit s$ shell of ${}^{12}\mathrm {C}$.
|
7
BACK 2003 looks for decays of unstable nuclides left after ${{\mathit N}}$ decays of parent ${}^{12}\mathrm {C}$, ${}^{13}\mathrm {C}$, ${}^{16}\mathrm {O}$ nuclei. These are ``invisible channel'' limits.
|
8
ZDESENKO 2003 gets this limit on proton disappearance in deuterium by analyzing SNO data in AHMAD 2002.
|
9
AHMAD 2002 (see its footnote 7) looks for neutrons left behind after the disappearance of the proton in deuterons.
|
10
BERNABEI 2000B looks for the decay of a ${}^{128}_{53}{}^{}\mathrm {I}$ nucleus following the disappearance of a proton in the otherwise-stable ${}^{129}_{54}{}^{}\mathrm {Xe}$ nucleus.
|
11
EVANS 1977 looks for the daughter nuclide ${}^{129}\mathrm {Xe}$ from possible ${}^{130}\mathrm {Te}$ decays in ancient Te ore samples.
|
12
This mean-life limit has been obtained from a half-life limit by dividing the latter by ln(2) = 0.693.
|
13
FLEROV 1958 looks for the spontaneous fission of a ${}^{232}\mathrm {Th}$ nucleus after the disappearance of one of its nucleons.
|