$1.29333236$ $\pm0.00000046$ |
1 |
|
RVUE |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$1.29333205$ $\pm0.00000051$ |
2 |
|
RVUE |
$1.29333217$ $\pm0.00000042$ |
3 |
|
RVUE |
$1.29333214$ $\pm0.00000043$ |
4 |
|
RVUE |
$1.2933317$ $\pm0.0000005$ |
5 |
|
RVUE |
$1.2933318$ $\pm0.0000005$ |
6 |
|
RVUE |
$1.293318$ $\pm0.000009$ |
7 |
|
RVUE |
$1.2933328$ $\pm0.0000072$ |
|
|
SPEC |
$1.293429$ $\pm0.000036$ |
|
|
RVUE |
1
The 2018 CODATA mass difference in $\mathit u$ is ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = 1.388$~449~33(49){\times }10^{-3}\mathit u$.
|
2
The 2014 CODATA mass difference in $\mathit u$ is ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = 1.388$~449~00(51){\times }10^{-3}\mathit u$.
|
3
The 2010 CODATA mass difference in $\mathit u$ is ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = 1.388$~449~19(45){\times }10^{-3}\mathit u$.
|
4
Calculated by us from the MOHR 2008 ratio ${\mathit m}_{{{\mathit n}}}/{\mathit m}_{{{\mathit p}}}$ = 1.00137841918(46). In u, ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = 1.38844920(46)${\times }10^{-3}~$u.
|
5
Calculated by us from the MOHR 2005 ratio ${\mathit m}_{{{\mathit n}}}/{\mathit m}_{{{\mathit p}}}$ = $1.00137841870$ $\pm0.00000000058$. In u, ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = ($1.3884487$ $\pm0.0000006$) $ \times 10^{-3}~$u.
|
6
Calculated by us from the MOHR 1999 ratio ${\mathit m}_{{{\mathit n}}}/{\mathit m}_{{{\mathit p}}}$ = $1.00137841887$ $\pm0.00000000058$. In u, ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = ($1.3884489$ $\pm0.0000006){\times }10^{-3}~$u.
|
7
Calculated by us from the COHEN 1987 ratio ${\mathit m}_{{{\mathit n}}}/{\mathit m}_{{{\mathit p}}}$ = $1.001378404$ $\pm0.000000009$. In u, ${\mathit m}_{{{\mathit n}}}{\mathit m}_{{{\mathit p}}}$ = $0.001388434$ $\pm0.000000009~$u.
|