In the pole approximation the electromagnetic transition form factor for a resonance of mass $\mathit M$ is given by the expression: $\vert \mathit F\vert ^2$ = (1 $−$ ${{\mathit M}^{2}}/{{\mathit \Lambda}^{2}}){}^{-2}$, where for the parameter $\Lambda $ vector dominance predicts $\Lambda $ = $\mathit M_{p}$ $\approx{}$ 0.770 GeV. The ARNALDI 2009 measurement is in obvious conflict with this expectation. Note that for ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ decay ARNALDI 2009 and DZHELYADIN 1980 obtain the value of $\Lambda $ consistent with vector dominance.
1ARNALDI 2016 reports $\Lambda {}^{-2}({{\mathit \omega}}$) = $2.223$ $\pm0.026$ $\pm0.037$ GeV${}^{-2}$ which we converted to the quoted $\Lambda $ value.
2ARNALDI 2009 reports $\Lambda {}^{-2}({{\mathit \omega}}$) = $2.24$ $\pm0.06$ $\pm0.02$ GeV${}^{-2}$ which we converted to the quoted $\Lambda $ value.
References:
ARNALDI
2016
PL B757 437
Precision Study of the ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \gamma}}$ and ${{\mathit \omega}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \pi}^{0}}$ Electromagnetic Transition Form-Factors and of the ${{\mathit \rho}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ Line Shape in NA60
ARNALDI
2009
PL B677 260
Study of the Electromagnetic Transition Form-Factors in ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \gamma}}$ and ${{\mathit \omega}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \pi}^{0}}$ Decays with NA60
DZHELYADIN
1981B
PL 102B 296
Study of the Electromagnetic Transition Formfactor in ${{\mathit \omega}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ Decay