$\bf{
775.26 \pm0.23}$
|
OUR AVERAGE
|
$775.3$ $\pm0.5$ $\pm0.6$ |
|
1 |
|
SND |
$775.02$ $\pm0.35$ |
|
2 |
|
BABR |
$775.97$ $\pm0.46$ $\pm0.70$ |
900k |
3 |
|
|
$774.6$ $\pm0.4$ $\pm0.5$ |
800k |
4, 5 |
|
SND |
$775.65$ $\pm0.64$ $\pm0.50$ |
114k |
6, 7 |
|
CMD2 |
$775.9$ $\pm0.5$ $\pm0.5$ |
1.98M |
8 |
|
KLOE |
$775.8$ $\pm0.9$ $\pm2.0$ |
500k |
8 |
|
SND |
$775.9$ $\pm1.1$ |
|
9 |
|
OLYA |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$775.4$ $\pm0.1$ |
34M |
10 |
|
CMD3 |
$763.49$ $\pm0.53$ |
|
11 |
|
RVUE |
$758.23$ $\pm0.46$ |
|
12 |
|
RVUE |
$775.8$ $\pm0.5$ $\pm0.3$ |
1.98M |
13 |
|
KLOE |
$775.9$ $\pm0.6$ $\pm0.5$ |
1.98M |
14 |
|
KLOE |
$775.0$ $\pm0.6$ $\pm1.1$ |
500k |
15 |
|
SND |
$775.1$ $\pm0.7$ $\pm5.3$ |
|
16 |
|
RVUE |
$770.5$ $\pm1.9$ $\pm5.1$ |
|
17 |
|
RVUE |
$764.1$ $\pm0.7$ |
|
18 |
|
RVUE |
$757.5$ $\pm1.5$ |
|
19 |
|
RVUE |
$768$ $\pm1$ |
|
20 |
|
RVUE |
1
From a fit of the cross section in the energy range 0.525 $<$ $\sqrt {s }$ $<$ 0.883 GeV parameterized by the sum of the Breit-Wigner amplitudes for the ${{\mathit \rho}{(770)}}$, ${{\mathit \omega}}$ and ${{\mathit \rho}{(1450)}}$ resonances.
|
2
Using the GOUNARIS 1968 parametrization with the complex phase of the ${{\mathit \rho}}−{{\mathit \omega}}$ interference and leaving the masses and widths of the ${{\mathit \rho}{(1450)}}$, ${{\mathit \rho}{(1700)}}$, and ${{\mathit \rho}{(2150)}}$ resonances as free parameters of the fit.
|
3
A combined fit of AKHMETSHIN 2007, AULCHENKO 2006, and AULCHENKO 2005.
|
4
Supersedes ACHASOV 2005A.
|
5
A fit of the SND data from 400 to 1000 MeV using parameters of the ${{\mathit \rho}{(1450)}}$ and ${{\mathit \rho}{(1700)}}$ from a fit of the data of BARKOV 1985, BISELLO 1989 and ANDERSON 2000A.
|
6
Using the GOUNARIS 1968 parametrization with the complex phase of the ${{\mathit \rho}}-{{\mathit \omega}}$ interference.
|
7
Update of AKHMETSHIN 2002.
|
8
Assuming ${\mathit m}_{{{\mathit \rho}^{+}}}$ = ${\mathit m}_{{{\mathit \rho}^{-}}}$, $\Gamma _{{{\mathit \rho}^{+}}}$ = $\Gamma _{{{\mathit \rho}^{-}}}$.
|
9
From the GOUNARIS 1968 parametrization of the pion form factor.
|
10
From a fit of the pion form factor in the energy range 0.32 $<$ $\sqrt {s }$ $<$ 1.2 GeV using the GOUNARIS 1968 parametrization with the complex phase of the ${{\mathit \rho}}−{{\mathit \omega}}$ interference with ${{\mathit \omega}}$ and ${{\mathit \phi}}$ masses and widths constrained by the values and their errors from PDG 2022, and leaving ${{\mathit \rho}{(1450)}}$, ${{\mathit \rho}{(1700)}}$ resonances as free parameters of the fit. Systematic errors not estimated.
|
11
Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of LEES 2012G and ABLIKIM 2016C.
|
12
Applies the Unitary $\&$ Analytic Model of the pion electromagnetic form factor of DUBNICKA 2010 to analyze the data of ACHASOV 2006, AKHMETSHIN 2007, AUBERT 2009AS, and AMBROSINO 2011A.
|
13
Assuming ${\mathit m}_{{{\mathit \rho}^{+}}}$ = ${\mathit m}_{{{\mathit \rho}^{-}}}$ = ${\mathit m}_{{{\mathit \rho}^{0}}}$, $\Gamma _{{{\mathit \rho}^{+}}}$ = $\Gamma _{{{\mathit \rho}^{-}}}$ = $\Gamma _{{{\mathit \rho}^{0}}}$.
|
14
Without limitations on masses and widths.
|
15
Assuming ${\mathit m}_{{{\mathit \rho}^{0}}}$ = ${\mathit m}_{{{\mathit \rho}^{\pm}}}$, $\mathit g_{{{\mathit \rho}^{0}} {{\mathit \pi}} {{\mathit \pi}}}$ = $\mathit g_{{{\mathit \rho}^{\pm}} {{\mathit \pi}} {{\mathit \pi}}}$.
|
16
Using the data of BARKOV 1985 in the hidden local symmetry model.
|
17
From the fit to ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ data from the compilations of HEYN 1981 and BARKOV 1985, including the GOUNARIS 1968 parametrization of the pion form factor.
|
18
A fit of BARKOV 1985 data assuming the direct ${{\mathit \omega}}{{\mathit \pi}}{{\mathit \pi}}$ coupling.
|
19
Applying the S-matrix formalism to the BARKOV 1985 data.
|
20
Includes BARKOV 1985 data. Model-dependent width definition.
|