$\bf{
(400 - 550)−{\mit i}(200 - 350)}$
|
OUR ESTIMATE
(see Fig. 64.3 in the review)
|
$(458 \pm7 {}^{+4}_{-10})−{\mit i}(245 \pm6 {}^{+7}_{-10})$ |
1 |
|
RVUE |
$(410 \pm20)−{\mit i}(240 \pm15)$ |
|
|
RVUE |
$(512 \pm15)−{\mit i}(188 \pm12)$ |
2 |
|
BES3 |
$(440 \pm10)−{\mit i}(238 \pm10)$ |
3 |
|
RVUE |
$(445 \pm25)−{\mit i}(278 {}^{+22}_{-18})$ |
4, 5 |
|
RVUE |
$(457 {}^{+14}_{-13})−{\mit i}(279 {}^{+11}_{-7})$ |
6, 4 |
|
RVUE |
$(442 {}^{+5}_{-8})−{\mit i}(274 {}^{+6}_{-5})$ |
7 |
|
RVUE |
$(452 \pm13)−{\mit i}(259 \pm16)$ |
8 |
|
RVUE |
$(448 \pm43)−{\mit i}(266 \pm43)$ |
9 |
|
RVUE |
$(455 \pm6 {}^{+31}_{-13})−{\mit i}(278 \pm6 {}^{+34}_{-43})$ |
10 |
|
RVUE |
$(463 \pm6 {}^{+31}_{-17})−{\mit i}(259 \pm6 {}^{+33}_{-34})$ |
11 |
|
RVUE |
$(552 {}^{+84}_{-106})−{\mit i}(232 {}^{+81}_{-72})$ |
12 |
|
BES2 |
$(466 \pm18)−{\mit i}(223 \pm28)$ |
13 |
|
CLEO |
$(472 \pm30)−{\mit i}(271 \pm30)$ |
14 |
|
RVUE |
$(484 \pm17)−{\mit i}(255 \pm10)$ |
|
|
RVUE |
$(430)−{\mit i}(325)$ |
15 |
|
RVUE |
$(441 {}^{+16}_{-8})−{\mit i}(272 {}^{+9}_{-12.5})$ |
16 |
|
RVUE |
$(470 \pm50)−{\mit i}(285 \pm25)$ |
17 |
|
RVUE |
$(541 \pm39)−{\mit i}(252 \pm42)$ |
18 |
|
BES2 |
$(528 \pm32)−{\mit i}(207 \pm23)$ |
19 |
|
RVUE |
$(533 \pm25)−{\mit i}(249 \pm25)$ |
20 |
|
RVUE |
$517−{\mit i}\text{ 240}$ |
|
|
RVUE |
$(470 \pm30)−{\mit i}(295 \pm20)$ |
16 |
|
RVUE |
$(535 {}^{+48}_{-36})−{\mit i}(155 {}^{+76}_{-53})$ |
21 |
|
|
$610 \pm14−{\mit i}(310 \pm13)$ |
22 |
|
RVUE |
$(540 {}^{+36}_{-29})−{\mit i}(193 {}^{+32}_{-40})$ |
|
|
|
$445−{\mit i}\text{ 235}$ |
|
|
RVUE |
$(523 \pm12)−{\mit i}(259 \pm7)$ |
|
|
RVUE |
$442−{\mit i} \text{ 227}$ |
|
|
RVUE |
$469−{\mit i}\text{ 203}$ |
|
|
RVUE |
$445−{\mit i}\text{ 221}$ |
|
|
RVUE |
$420−{\mit i} \text{ 212}$ |
|
|
RVUE |
$440−{\mit i}\text{ 245}$ |
23 |
|
RVUE |
$(602 \pm26)−{\mit i}(196 \pm27)$ |
24 |
|
|
$(537 \pm20)−{\mit i}(250 \pm17)$ |
25 |
|
RVUE |
$470−{\mit i}\text{ 250}$ |
26, 27 |
|
RVUE |
$387−{\mit i}\text{ 305}$ |
28, 27 |
|
RVUE |
$420−{\mit i}\text{ 370}$ |
29 |
|
RVUE |
$(506 \pm10)−{\mit i}(247 \pm3)$ |
|
|
RVUE |
$370−{\mit i}\text{ 356}$ |
30 |
|
RVUE |
$408−{\mit i}\text{ 342}$ |
30, 27 |
|
RVUE |
$470−{\mit i}\text{ 208}$ |
31 |
|
RVUE |
$(750 \pm50)−{\mit i}(450 \pm50)$ |
32 |
|
RVUE |
$(660 \pm100)−{\mit i}(320 \pm70)$ |
|
|
HBC |
$650−{\mit i}\text{ 370}$ |
33 |
|
RVUE |
1
Data driven analysis using partial-wave dispersion relations.
|
2
S-matrix pole; 8595 events.
|
3
Applying the chiral unitary approach at NLO to the ${{\mathit K}_{{{e4}}}}$ data of BATLEY 2010 and ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit N}}$ data of HYAMS 1973, GRAYER 1974, and PROTOPOPESCU 1973.
|
4
Uses the ${{\mathit K}_{{{e4}}}}$ data of BATLEY 2010C and the ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit N}}$ data of HYAMS 1973, GRAYER 1974, and PROTOPOPESCU 1973.
|
5
Analytic continuation using Roy equations.
|
6
Analytic continuation using GKPY equations.
|
7
Using Roy equations.
|
8
Average of three variants of the analytic K-matrix model. Uses the ${{\mathit K}_{{{e4}}}}$ data of BATLEY 2008A and the ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit N}}$ data of HYAMS 1973 and GRAYER 1974.
|
9
Average of the analyses of three data sets in the K-matrix model. Uses the data of BATLEY 2008A, HYAMS 1973, and GRAYER 1974, partially of COHEN 1980 or ETKIN 1982B.
|
10
From the ${{\mathit K}_{{{e4}}}}$ data of BATLEY 2008A and ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit N}}$ data of HYAMS 1973.
|
11
From the ${{\mathit K}_{{{e4}}}}$ data of BATLEY 2008A and ${{\mathit \pi}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit N}}$ data of PROTOPOPESCU 1973, GRAYER 1974, and ESTABROOKS 1974.
|
12
From a mean of three different ${{\mathit f}_{{{0}}}{(500)}}$ parametrizations. Uses 40k events.
|
13
From an isobar model using 2.6k events.
|
14
Reanalysis of ABLIKIM 2004A, PISLAK 2001, and HYAMS 1973 data.
|
15
Using the N/D method.
|
16
From the solution of the Roy equation (ROY 1971) for the isoscalar S-wave and using a phase-shift analysis of HYAMS 1973 and PROTOPOPESCU 1973 data.
|
17
Reanalysis of the data from PROTOPOPESCU 1973, ESTABROOKS 1974, GRAYER 1974, ROSSELET 1977, PISLAK 2003, and AKHMETSHIN 2004.
|
18
From a mean of six different analyses and ${{\mathit f}_{{{0}}}{(500)}}$ parameterizations.
|
19
Using data on ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \pi}}{{\mathit \pi}}$ from BAI 2000E and on ${{\mathit \Upsilon}{(nS)}}$ $\rightarrow$ ${{\mathit \Upsilon}{(mS)}}{{\mathit \pi}}{{\mathit \pi}}$ from BUTLER 1994B and ALEXANDER 1998.
|
20
From a combined analysis of HYAMS 1973, AUGUSTIN 1989, AITALA 2001B, and PISLAK 2001.
|
21
A similar analysis (KOMADA 2001) finds ($580$ ${}^{+79}_{-30})−{\mit i}(190$ ${}^{+107}_{-49}$) MeV.
|
22
Coupled channel reanalysis of BATON 1970, BENSINGER 1971, BAILLON 1972, HYAMS 1973, HYAMS 1975, ROSSELET 1977, COHEN 1980, and ETKIN 1982B using the uniformizing variable.
|
23
Using the inverse amplitude method and data of ESTABROOKS 1973, GRAYER 1974, and PROTOPOPESCU 1973.
|
24
Reanalysis of data from HYAMS 1973, GRAYER 1974, SRINIVASAN 1975, and ROSSELET 1977 using the interfering amplitude method.
|
25
Average and spread of 4 variants (``up'' and ``down'') of KAMINSKI 1997B 3-channel model.
|
26
Uses data from BEIER 1972B, OCHS 1973, HYAMS 1973, GRAYER 1974, ROSSELET 1977, CASON 1983, ASTON 1988, and ARMSTRONG 1991B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
|
27
Demonstrates explicitly that ${{\mathit f}_{{{0}}}{(500)}}$ and ${{\mathit f}_{{{0}}}{(1370)}}$ are two different poles.
|
28
Analysis of data from FALVARD 1988.
|
29
Analysis of data from OCHS 1973, ESTABROOKS 1975, ROSSELET 1977, and MUKHIN 1980.
|
30
Analysis of data from OCHS 1973, GRAYER 1974, and ROSSELET 1977.
|
31
Coupled-channel analysis using data from PROTOPOPESCU 1973, HYAMS 1973, HYAMS 1975, GRAYER 1974, ESTABROOKS 1974, ESTABROOKS 1975, FROGGATT 1977, CORDEN 1979, BISWAS 1981.
|
32
Analysis of data from APEL 1972C, GRAYER 1974, CASON 1976, PAWLICKI 1977. Includes spread and errors of 4 solutions.
|
33
Analysis of data from BATON 1970, BENSINGER 1971, COLTON 1971, BAILLON 1972,PROTOPOPESCU 1973, and WALKER 1967.
|