$\mathit A_{\mathit CPT}({{\mathit K}^{\mp}}{{\mathit \pi}^{\pm}}$) in ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$, ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$
INSPIRE search
$\mathit A_{CPT}$(t) is defined in terms of the time-dependent decay probabilities ${{\mathit P}}$( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$) and ${{\overline{\mathit P}}}$( ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$) by $\mathit A_{CPT}$(t) = (${{\overline{\mathit P}}}−{{\mathit P}})/({{\overline{\mathit P}}}$ + ${{\mathit P}}$). For small mixing parameters x${}\equiv\Delta \mathit m/\Gamma $ and y${}\equiv\Delta \Gamma /2\Gamma $ (as is the case), and times t, $\mathit A_{CPT}$(t) reduces to [y $\mathit Re$(z) $−$ x $\mathit Im$(z)] $\Gamma $t, where z is the $\mathit CPT$-violating parameter. The following is actually y $\mathit Re$(z) $−$ x $\mathit Im$(z).