$\bf{
3.522 \pm0.037}$
|
OUR EVALUATION
$~~$(Produced by HFLAV) with ${{\mathit \rho}^{2}}=1.139$ $\pm0.020$ and a correlation 0.268. The fitted ${{\mathit \chi}^{2}}$ is 63.2 for 27 degrees of freedom.
|
$\bf{
3.62 \pm0.05}$
|
OUR AVERAGE
Error includes scale factor of 1.6.
|
$3.66$ $\pm0.05$ |
1 |
|
BELL |
$3.676$ $\pm0.028$ $\pm0.086$ |
2 |
|
BEL2 |
$3.506$ $\pm0.015$ $\pm0.056$ |
3 |
|
BELL |
$3.59$ $\pm0.02$ $\pm0.12$ |
4 |
|
BABR |
$3.92$ $\pm0.18$ $\pm0.23$ |
5 |
|
DLPH |
$4.31$ $\pm0.13$ $\pm0.18$ |
6 |
|
CLE2 |
$3.55$ $\pm0.14$ ${}^{+0.23}_{-0.24}$ |
7 |
|
DLPH |
$3.71$ $\pm0.10$ $\pm0.20$ |
8 |
|
OPAL |
$3.19$ $\pm0.18$ $\pm0.19$ |
9 |
|
ALEP |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$3.64$ $\pm0.09$ |
10 |
|
BELL |
$3.483$ $\pm0.015$ $\pm0.056$ |
3 |
|
BELL |
$3.46$ $\pm0.02$ $\pm0.10$ |
11 |
|
BELL |
$3.59$ $\pm0.06$ $\pm0.14$ |
12 |
|
BABR |
$3.44$ $\pm0.03$ $\pm0.11$ |
13 |
|
BABR |
$3.55$ $\pm0.03$ $\pm0.16$ |
14 |
|
BABR |
$3.77$ $\pm0.11$ $\pm0.19$ |
15 |
|
DLPH |
$3.54$ $\pm0.19$ $\pm0.18$ |
16 |
|
BELL |
$4.31$ $\pm0.13$ $\pm0.18$ |
17 |
|
CLE2 |
$3.28$ $\pm0.19$ $\pm0.22$ |
|
|
OPAL |
$3.50$ $\pm0.19$ $\pm0.23$ |
18 |
|
DLPH |
$3.51$ $\pm0.19$ $\pm0.20$ |
19 |
|
CLE2 |
$3.14$ $\pm0.23$ $\pm0.25$ |
|
|
ALEP |
1
PRIM 2024 value established from a complete set of angular coefficients for exclusive ${{\mathit B}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ decays with hadronic tag-side reconstruction. The $\vert {\it V}_{\it cb}\vert {\times }\mathit F$(1) is derived from the extracted the BGL and CNL form factor parameters: $\vert {\it V}_{\it cb}\vert _{{\mathrm {BGL}}}$ = ($40.7$ $\pm0.7$) $ \times 10^{-3}$ with the zero-recoil lattice QCD point $\mathit F$(1) = $0.900$ $\pm0.009$ and $\vert {\it V}_{\it cb}\vert _{{\mathrm {CNL}}}$ = ($40.3$ $\pm0.6$) $ \times 10^{-3}$.
|
2
ADACHI 2023J result comes from differential shapes of exclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{*}}{{\mathit \ell}^{-}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ or ${{\mathit \mu}}$) decays. Using CNL form factor parametrization and the zero-recoil lattice QCD point $\mathit F$(1) = $0.906$ $\pm0.013$ ADACHI 2023J finds $\vert V_{cb}\vert _{{\mathrm {CNL}}}$ = ($40.57$ $\pm0.31$ $\pm0.95$ $\pm0.58$) $ \times 10^{-3}$ where the last uncertainty is due to the prediction of $\mathit F$(1). Also reports a measurement of $\vert V_{cb}\vert _{{\mathrm {BGL}}}$ = ($40.13$ $\pm0.27$ $\pm0.93$ $\pm0.58$) $ \times 10^{-3}$ using BGL form factors parametrization.
|
3
WAHEED 2021 uses fully reconstructed ${{\mathit D}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$ events (${{\mathit \ell}}$ = ${{\mathit e}}$ or ${{\mathit \mu}}$) and ${{\mathit \eta}_{{{EW}}}}$ = 1.0066.
|
4
Obtained from a global fit to ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{(*)}}{{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ events, with reconstructed ${{\mathit D}^{0}}{{\mathit \ell}}$ and ${{\mathit D}^{+}}{{\mathit \ell}}$ final states and $\rho {}^{2}$ = $1.22$ $\pm0.02$ $\pm0.07$.
|
5
Measurement using fully reconstructed ${{\mathit D}^{*}}$ sample with a $\rho {}^{2}$ = $1.32$ $\pm0.15$ $\pm0.33$.
|
6
Average of the ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$ and ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}}$) ${{\mathit \ell}^{+}}{{\mathit \nu}}$ modes with $\rho {}^{2}$ = $1.61$ $\pm0.09$ $\pm0.21$ and $\mathit f_{+−}$ = $0.521$ $\pm0.012$.
|
7
ABREU 2001H measured using about 5000 partial reconstructed ${{\mathit D}^{*}}$ sample with a $\rho {}^{2}=1.34$ $\pm0.14$ ${}^{+0.24}_{-0.22}$.
|
8
ABBIENDI 2000Q: measured using both inclusively and exclusively reconstructed ${{\mathit D}^{*\pm}}$ samples with a $\rho {}^{2}=1.21$ $\pm0.12$ $\pm0.20$. The statistical and systematic correlations between $\vert {\it V}_{\it cb}\vert {\times }\mathit F$(1) and $\rho {}^{2}$ are $0.90$ and $0.54$ respectively.
|
9
BUSKULIC 1997: measured using exclusively reconstructed ${{\mathit D}^{*\pm}}$ with a $\mathit a{}^{2}=0.31$ $\pm0.17$ $\pm0.08$. The statistical correlation is $0.92$.
|
10
Measured from differential shapes of exclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{*}}{{\mathit \ell}^{-}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ decays with hadronic tag-side reconstruction and extracting the CNL and BGL form factor parameters. PRIM 2023 finds $\vert V_{cb}\vert _{{\mathrm {CNL}}}$ = ($40.2$ $\pm0.9$) $ \times 10^{-3}$ with the zero-recoil lattice QCD point $\mathit F$(1) = $0.906$ $\pm0.013$. PRIM 2023 provides also a measurement of $\vert V_{cb}\vert _{{\mathrm {BGL}}}$ = ($40.7$ $\pm1.0$) $ \times 10^{-3}$.
|
11
Uses fully reconstructed ${{\mathit D}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$ events (${{\mathit \ell}}$ = ${{\mathit e}}$ or ${{\mathit \mu}}$).
|
12
Measured using the dependence of ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{{e}}}}$ decay differential rate and the form factor description by CAPRINI 1998 with $\rho {}^{2}$ = $1.16$ $\pm0.06$ $\pm0.08$.
|
13
Measured using fully reconstructed ${{\mathit D}^{*}}$ sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho {}^{2}$ = $1.191$ $\pm0.048$ $\pm0.028$, $\mathit R_{1}$(1) = $1.429$ $\pm0.061$ $\pm0.044$, and $\mathit R_{2}$(1) = $0.827$ $\pm0.038$ $\pm0.022$.
|
14
Measurement using fully reconstructed ${{\mathit D}^{*}}$ sample with a $\rho {}^{2}$ = $1.29$ $\pm0.03$ $\pm0.27$.
|
15
Combines with previous partial reconstructed ${{\mathit D}^{*}}$ measurement with a $\rho {}^{2}$ = $1.39$ $\pm0.10$ $\pm0.33$.
|
16
Measured using exclusive ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}}$ decays with $\rho {}^{2}$= $1.35$ $\pm0.17$ $\pm0.19$ and a correlation of $0.91$.
|
17
BRIERE 2002 result is based on the same analysis and data sample reported in ADAM 2003.
|
18
ABREU 1996P: measured using both inclusively and exclusively reconstructed ${{\mathit D}^{*\pm}}$ samples.
|
19
BARISH 1995: measured using both exclusive reconstructed ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$ and ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit \ell}^{+}}{{\mathit \nu}}$ samples. They report their experiment's uncertainties $\pm{}0.0019$ $\pm0.0018$ $\pm0.0008$, where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.
|