In the pole approximation the electromagnetic transition form factor for a resonance of mass $\mathit M$ is given by the expression: $\vert \mathit F\vert ^2$ = (1 $−$ ${{\mathit M}^{2}}/{{\mathit \Lambda}^{2}}){}^{-2}$, where for the parameter $\Lambda $ vector dominance predicts $\Lambda $ = $\mathit M_{p}$ $\approx{}$ 0.770 GeV. The ARNALDI 2009 measurement is in obvious conflict with this expectation. Note that for ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ decay ARNALDI 2009 and DZHELYADIN 1980 obtain the value of $\Lambda $ consistent with vector dominance.
PARAMETER $\Lambda$ IN $\omega\to\pi^0 e^+ e^-$ DECAY INSPIRE search
1ADLARSON 2017B reports $\Lambda {}^{-2}({{\mathit \omega}}{{\mathit \pi}^{0}}$) = $1.99$ $\pm0.21$ GeV${}^{-2}$ that we converted to the quoted $\Lambda $ value.
References:
ADLARSON
2017B
PR C95 035208
Measurement of the ${{\mathit \omega}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ and ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \gamma}}$ Dalitz Decays with the A2 Setup at MAMI