$\bf{
2984.1 \pm0.4}$
|
OUR AVERAGE
Error includes scale factor of 1.2.
|
$2985.01$ $\pm0.17$ $\pm0.89$ |
35k |
|
|
LHCB |
$2983.9$ $\pm0.7$ $\pm0.1$ |
|
1 |
|
LHCB |
$2985.9$ $\pm0.7$ $\pm2.1$ |
1705 |
|
|
BES3 |
$2984.6$ $\pm0.7$ $\pm2.2$ |
2673 |
|
|
BELL |
$2986.7$ $\pm0.5$ $\pm0.9$ |
11k |
2 |
|
LHCB |
$2982.8$ $\pm1.0$ $\pm0.5$ |
6.4k |
3 |
|
LHCB |
$2982.2$ $\pm1.5$ $\pm0.1$ |
2.0k |
4 |
|
LHCB |
$2983.5$ $\pm1.4$ ${}^{+1.6}_{-3.6}$ |
|
5 |
|
KEDR |
$2979.8$ $\pm0.8$ $\pm3.5$ |
4.5k |
6, 7 |
|
BABR |
$2984.1$ $\pm1.1$ $\pm2.1$ |
900 |
6, 8, 7 |
|
BABR |
$2984.3$ $\pm0.6$ $\pm0.6$ |
|
9, 10 |
|
BES3 |
$2984.49$ $\pm1.16$ $\pm0.52$ |
832 |
6 |
|
BES3 |
$2982.7$ $\pm1.8$ $\pm2.2$ |
486 |
|
|
BELL |
$2984.5$ $\pm0.8$ $\pm3.1$ |
11k |
|
|
BABR |
$2985.4$ $\pm1.5$ ${}^{+0.5}_{-2.0}$ |
920 |
10 |
|
BELL |
$2982.2$ $\pm0.4$ $\pm1.6$ |
14k |
11 |
|
BABR |
$2985.8$ $\pm1.5$ $\pm3.1$ |
0.9k |
|
|
BABR |
$2986.1$ $\pm1.0$ $\pm2.5$ |
7.5k |
|
|
BELL |
$2970$ $\pm5$ $\pm6$ |
501 |
12 |
|
BELL |
$2971$ $\pm3$ ${}^{+2}_{-1}$ |
195 |
|
|
BELL |
$2974$ $\pm7$ ${}^{+2}_{-1}$ |
20 |
|
|
BELL |
$2981.8$ $\pm1.3$ $\pm1.5$ |
592 |
|
|
CLEO |
$2984.1$ $\pm2.1$ $\pm1.0$ |
190 |
13 |
|
E835 |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$2982.5$ $\pm0.4$ $\pm1.4$ |
12k |
14 |
|
BABR |
$2982.2$ $\pm0.6$ |
|
15 |
|
CLEO |
$2982$ $\pm5$ |
270 |
16 |
|
BABR |
$2982.5$ $\pm1.1$ $\pm0.9$ |
2.5k |
17 |
|
BABR |
$2977.5$ $\pm1.0$ $\pm1.2$ |
|
18, 15 |
|
BES |
$2979.6$ $\pm2.3$ $\pm1.6$ |
180 |
19 |
|
BELL |
$2976.3$ $\pm2.3$ $\pm1.2$ |
|
20, 15 |
|
BES |
$2976.6$ $\pm2.9$ $\pm1.3$ |
140 |
21, 15 |
|
BES |
$2980.4$ $\pm2.3$ $\pm0.6$ |
|
22 |
|
CLE2 |
$2975.8$ $\pm3.9$ $\pm1.2$ |
|
21 |
|
BES |
$2999$ $\pm8$ |
25 |
|
|
DLPH |
$2988.3$ ${}^{+3.3}_{-3.1}$ |
|
|
|
E760 |
$2974.4$ $\pm1.9$ |
|
23, 15 |
|
DM2 |
$2969$ $\pm4$ $\pm4$ |
80 |
15 |
|
MRK3 |
$2956$ $\pm12$ $\pm12$ |
|
15 |
|
MRK3 |
$2982.6$ ${}^{+2.7}_{-2.3}$ |
12 |
|
|
SPEC |
$2980.2$ $\pm1.6$ |
|
23, 15 |
|
MRK3 |
$2984$ $\pm2.3$ $\pm4.0$ |
|
15 |
|
CBAL |
$2976$ $\pm8$ |
|
24, 15 |
|
MRK3 |
$2982$ $\pm8$ |
18 |
25 |
|
MRK2 |
$2980$ $\pm9$ |
|
25 |
|
CBAL |
1
AAIJ 2020H report ${\mathit m}_{{{\mathit J / \psi}}}{\mathit m}_{{{\mathit \eta}_{{{c}}}{(1S)}}}$ = $113.0$ $\pm0.7$ $\pm0.1$ MeV. We use the current value ${\mathit m}_{{{\mathit J / \psi}}}$ = $3096.900$ $\pm0.006$ MeV to obtain the quoted mass.
|
2
AAIJ 2017AD report ${\mathit m}_{{{\mathit J / \psi}}}{\mathit m}_{{{\mathit \eta}_{{{c}}}{(1S)}}}$ = $110.2$ $\pm0.5$ $\pm0.9$ MeV. We use the current value ${\mathit m}_{{{\mathit J / \psi}}}$ = $3096.900$ $\pm0.006$ MeV to obtain the quoted mass.
|
3
From a fit of the ${{\mathit \phi}}{{\mathit \phi}}$ invariant mass with the mass and width of ${{\mathit \eta}_{{{c}}}{(1S)}}$ as free parameters.
|
4
AAIJ 2015BI reports ${\mathit m}_{{{\mathit J / \psi}}}$ $−$ ${\mathit m}_{{{\mathit \eta}_{{{c}}}{(1S)}}}$ = $114.7$ $\pm1.5$ $\pm0.1$ MeV from a sample of ${{\mathit \eta}_{{{c}}}{(1S)}}$ and ${{\mathit J / \psi}}$ produced in ${{\mathit b}}$-hadron decays. We have used current value of ${\mathit m}_{{{\mathit J / \psi}}}$ = $3096.900$ $\pm0.006$ MeV to arrive at the quoted ${\mathit m}_{{{\mathit \eta}_{{{c}}}{(1S)}}}$ result.
|
5
Taking into account an asymmetric photon lineshape.
|
6
With floating width.
|
7
Ignoring possible interference with the non-resonant 0${}^{-}$ amplitude.
|
8
Using both, ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ and ${{\mathit \eta}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ decays.
|
9
From a simultaneous fit to six decay modes of the ${{\mathit \eta}_{{{c}}}}$.
|
10
Accounts for interference with non-resonant continuum.
|
11
Taking into account interference with the non-resonant $\mathit J{}^{P} = 0-$ amplitude.
|
12
From a fit of the ${{\mathit J / \psi}}$ recoil mass spectrum. Supersedes ABE,K 2002 and ABE 2004G.
|
13
Using mass of ${{\mathit \psi}{(2S)}}$ = $3686.00$ MeV.
|
14
Not independent from the measurements reported by LEES 2010.
|
15
MITCHELL 2009 observes a significant asymmetry in the lineshapes of ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}}$ and ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}}$ transitions. If ignored, this asymmetry could lead to significant bias whenever the mass and width are measured in ${{\mathit \psi}{(2S)}}$ or ${{\mathit J / \psi}}$ radiative decays.
|
16
From the fit of the kaon momentum spectrum. Systematic errors not evaluated.
|
17
Superseded by LEES 2010.
|
18
From a simultaneous fit of five decay modes of the ${{\mathit \eta}_{{{c}}}}$.
|
19
Superseded by VINOKUROVA 2011.
|
20
Weighted average of the ${{\mathit \psi}{(2S)}}$ and ${{\mathit J / \psi}{(1S)}}$ samples. Using an ${{\mathit \eta}_{{{c}}}}$ width of $13.2$ MeV.
|
21
Average of several decay modes. Using an ${{\mathit \eta}_{{{c}}}}$ width of $13.2$ MeV.
|
22
Superseded by ASNER 2004.
|
23
Average of several decay modes.
|
24
${{\mathit \eta}_{{{c}}}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$.
|
25
Mass adjusted by us to correspond to ${{\mathit J / \psi}{(1S)}}$ mass = 3097 MeV.
|