| $\bf{
4.183 \pm0.007}$
|
OUR EVALUATION
of $\overline{\rm{}MS}$ Mass.
|
| $3.94$ ${}^{+0.46}_{-0.40}$ |
1 |
|
THEO |
| $4.202$ $\pm0.021$ |
2 |
|
LATT |
| $4.197$ $\pm0.008$ |
3 |
|
THEO |
| $4.049$ ${}^{+0.138}_{-0.118}$ |
4 |
|
HERA |
| $4.195$ $\pm0.014$ |
5 |
|
LATT |
| $4.186$ $\pm0.037$ |
6 |
|
THEO |
| $4.197$ $\pm0.022$ |
7 |
|
THEO |
| $4.183$ $\pm0.037$ |
8 |
|
THEO |
| $4.203$ ${}^{+0.016}_{-0.034}$ |
9 |
|
THEO |
| $4.196$ $\pm0.023$ |
10 |
|
LATT |
| $4.176$ $\pm0.023$ |
11 |
|
THEO |
| $4.21$ $\pm0.11$ |
12 |
|
LATT |
| $4.169$ $\pm0.002$ $\pm0.008$ |
13 |
|
THEO |
| $4.166$ $\pm0.043$ |
14 |
|
LATT |
| $4.247$ $\pm0.034$ |
15 |
|
THEO |
| $4.171$ $\pm0.009$ |
16 |
|
THEO |
| $4.29$ $\pm0.14$ |
17 |
|
LATT |
| $4.18$ ${}^{+0.05}_{-0.04}$ |
18 |
|
THEO |
| $4.186$ $\pm0.044$ $\pm0.015$ |
19 |
|
BABR |
| $4.163$ $\pm0.016$ |
20 |
|
THEO |
| $4.243$ $\pm0.049$ |
21 |
|
BELL |
| • • • We do not use the following data for averages, fits, limits, etc. • • • |
| $4.184$ $\pm0.011$ |
22 |
|
THEO |
| $4.188$ $\pm0.008$ |
23 |
|
THEO |
| $4.07$ $\pm0.17$ |
24 |
|
ZEUS |
| $4.201$ $\pm0.043$ |
25 |
|
THEO |
| $4.236$ $\pm0.069$ |
26 |
|
THEO |
| $4.213$ $\pm0.059$ |
27 |
|
THEO |
| $4.235$ $\pm0.003$ $\pm0.055$ |
28 |
|
THEO |
| $4.212$ $\pm0.032$ |
29 |
|
THEO |
| $4.177$ $\pm0.011$ |
30 |
|
THEO |
| $4.171$ $\pm0.014$ |
31 |
|
THEO |
| $4.164$ $\pm0.023$ |
32 |
|
LATT |
| $4.173$ $\pm0.010$ |
33 |
|
THEO |
| $5.26$ $\pm1.2$ |
34 |
|
DLPH |
| $4.42$ $\pm0.06$ $\pm0.08$ |
35 |
|
LATT |
| $4.347$ $\pm0.048$ $\pm0.08$ |
36 |
|
LATT |
| $4.164$ $\pm0.025$ |
37 |
|
THEO |
| $4.19$ $\pm0.40$ |
38 |
|
DLPH |
| $4.205$ $\pm0.058$ |
39 |
|
THEO |
| $4.20$ $\pm0.04$ |
40 |
|
THEO |
| $4.19$ $\pm0.06$ |
41 |
|
THEO |
| $4.4$ $\pm0.3$ |
42 |
|
LATT |
| $4.22$ $\pm0.06$ |
43 |
|
THEO |
| $4.17$ $\pm0.03$ |
44 |
|
THEO |
| $4.22$ $\pm0.11$ |
45 |
|
THEO |
| $4.25$ $\pm0.11$ |
46 |
|
LATT |
| $4.22$ $\pm0.09$ |
47 |
|
THEO |
| $4.19$ $\pm0.05$ |
48 |
|
THEO |
| $4.20$ $\pm0.09$ |
49 |
|
THEO |
| $4.33$ $\pm0.10$ |
50 |
|
LATT |
| $4.24$ $\pm0.10$ |
51 |
|
THEO |
| $4.207$ $\pm0.03$ |
52 |
|
THEO |
| $4.33$ $\pm0.06$ $\pm0.10$ |
53 |
|
CLEO |
| $4.190$ $\pm0.032$ |
54 |
|
THEO |
| $4.346$ $\pm0.070$ |
55 |
|
THEO |
|
1
APARISI 2022 determine ${{\mathit m}_{{{b}}}}$ at the Higgs mass, ${{\overline{\mathit m}}_{{{b}}}}({{\mathit m}_{{{H}}}}$) = $2.60$ ${}^{+0.36}_{-0.31}$ GeV from Higgs boson decay rates at the LHC, which is used to obtain ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$).
|
|
2
HATTON 2021 determine ${{\overline{\mathit m}}_{{{b}}}}$(3 GeV) = $4.513$ $\pm0.026$ GeV using a lattice QCD + quenched QED simulation using the HISQ action and including ${{\mathit n}_{{{f}}}}$ = 2+1+1 flavors of sea quarks, by combining their ${{\overline{\mathit m}}_{{{b}}}}/{{\overline{\mathit m}}_{{{c}}}}$ and ${{\overline{\mathit m}}_{{{c}}}}$ determinations.
|
|
3
NARISON 2020 determines the quark mass using QCD Laplace sum rules from the ${{\mathit B}_{{{c}}}}$ mass, combined with previous determinations of the QCD condensates and ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ masses.
|
|
4
ABRAMOWICZ 2018 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) = $4.049$ ${}^{+0.104}_{-0.109}{}^{+0.090}_{-0.032}{}^{+0.001}_{-0.031}$ from the production of ${\mathit {\mathit b}}$ quarks in ${{\mathit e}}{{\mathit p}}$ collisions at HERA using combined H1 and ZEUS data. The experimental/fitting errors, and those from modeling and parameterization have been combined in quadrature.
|
|
5
BAZAVOV 2018 determine the ${\mathit {\mathit b}}$ mass using a lattice computation with staggered fermions and five active quark flavors.
|
|
6
PESET 2018 determine ${{\overline{\mathit m}}_{{{c}}}}({{\overline{\mathit m}}_{{{c}}}}$) and ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) using an N3LO calculation of the ${{\mathit \eta}_{{{c}}}}$, ${{\mathit \eta}_{{{b}}}}$ and ${{\mathit B}_{{{c}}}}$ masses.
|
|
7
KIYO 2016 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from the ${{\mathit \Upsilon}{(1S)}}$ mass at order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO).
|
|
8
ALBERTI 2015 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from fits to inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{{c}}}}{{\mathit e}}{{\overline{\mathit \nu}}}$ decay. They also find ${{\mathit m}}{}^{{\mathrm {kin}}}_{b}$(1 GeV) = $4.553$ $\pm0.020$ GeV.
|
|
9
BENEKE 2015 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order N3LO including finite ${\mathit m}_{{{\mathit c}}}$ effects. They find ${{\mathit m}}{}^{{\mathrm {PS}}}_{b}$(2 GeV) = $4.532$ ${}^{+0.013}_{-0.039}$ GeV, and ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) = $4.193$ ${}^{+0.022}_{-0.035}$ GeV. The value quoted is obtained using the four-loop conversion given in BENEKE 2016.
|
|
10
COLQUHOUN 2015 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from moments of the vector current correlator computed with a lattice simulation using the NRQCD action.
|
|
11
DEHNADI 2015 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO), and fitting to both experimental data and lattice results.
|
|
12
BERNARDONI 2014 determine ${{\mathit m}_{{{b}}}}$ from ${{\mathit n}_{{{f}}}}$ = 2 lattice calculations using heavy quark effective theory non-perturbatively renormalized and matched to QCD at 1/$\mathit m$ order.
|
|
13
PENIN 2014 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) = $4.169$ $\pm0.008$ $\pm0.002$ $\pm0.002$ using an estimate of the order ${{\mathit \alpha}_{{{s}}}^{3}}{\mathit {\mathit b}}$-quark vacuum polarization function in the threshold region, including finite ${\mathit m}_{{{\mathit c}}}$ effects. The errors of $\pm0.008$ from theoretical uncertainties, and $\pm0.002$ from ${{\mathit \alpha}_{{{s}}}}$ have been combined in quadrature.
|
|
14
LEE 2013O determines ${\mathit m}_{{{\mathit b}}}$ using lattice calculations of the ${{\mathit \Upsilon}}$ and ${{\mathit B}_{{{s}}}}$ binding energies in NRQCD, including three light dynamical quark flavors. The quark mass shift in NRQCD is determined to order ${{\mathit \alpha}_{{{s}}}^{2}}$, with partial ${{\mathit \alpha}_{{{s}}}^{3}}$ contributions.
|
|
15
LUCHA 2013 determines ${\mathit m}_{{{\mathit b}}}$ from QCD sum rules for heavy-light currents using the lattice value for ${{\mathit f}_{{{B}}}}$ of $191.5$ $\pm7.3$ GeV.
|
|
16
BODENSTEIN 2012 determine ${\mathit m}_{{{\mathit b}}}$ using sum rules for the vector current correlator and the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ total cross-section.
|
|
17
DIMOPOULOS 2012 determine quark masses from a lattice computation using ${{\mathit n}_{{{f}}}}$ = 2 dynamical flavors of twisted mass fermions.
|
|
18
LASCHKA 2011 determine the ${{\mathit b}}$ mass from the charmonium spectrum. The theoretical computation uses the heavy potential to order 1/${\mathit m}_{{{\mathit Q}}}$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales.
|
|
19
AUBERT 2010A determine the ${\mathit {\mathit b}}$- and ${\mathit {\mathit c}}$-quark masses from a fit to the inclusive decay spectra in semileptonic ${{\mathit B}}$ decays in the kinetic scheme (and convert it to the $\overline{\rm{}MS}$ scheme).
|
|
20
CHETYRKIN 2009 determine ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ cross-section and sum rules, using an order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO) computation of the heavy quark vacuum polarization.
|
|
21
SCHWANDA 2008 measure moments of the inclusive photon spectrum in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{{s}}}}{{\mathit \gamma}}$ decay to determine ${{\mathit m}_{{{b}}}^{1S}}$. We have converted this to $\overline{\rm{}MS}$ scheme.
|
|
22
NARISON 2018A determines ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) as a function of ${{\mathit \alpha}_{{{s}}}}$ using QCD exponential sum rules and their ratios evaluated at the optimal scale $\mu $ = 9.5 GeV at N2LO-N3LO of perturbative QCD and including condensates up to dimension $6 - 8$ in the (axial-)vector and (pseudo-)scalar bottomonium channels.
|
|
23
NARISON 2018B determines ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) using QCD vector moment sum rules and their ratios at N2LO-N3LO of perturbative QCD and including condensates up to dimension 8.
|
|
24
ABRAMOWICZ 2014A determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) = $4.07$ $\pm0.14$ ${}^{+0.01}_{-0.07}{}^{+0.05}_{-0.00}{}^{+0.08}_{-0.05}$ from the production of ${\mathit {\mathit b}}$ quarks in ${{\mathit e}}{{\mathit p}}$ collisions at HERA. The errors due to fitting, modeling, PDF parameterization, and theoretical QCD uncertainties due to the values of ${{\mathit \alpha}_{{{s}}}}$, ${{\mathit m}_{{{c}}}}$, and the renormalization scale $\mu $ have been combined in quadrature.
|
|
25
AYALA 2014A determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from the ${{\mathit \Upsilon}{(1S)}}$ mass computed to N3LO order in perturbation theory using a renormalon subtracted scheme.
|
|
26
NARISON 2013 determines ${\mathit m}_{{{\mathit b}}}$ using QCD spectral sum rules to order ${{\mathit \alpha}_{{{s}}}^{2}}$ (NNLO) and including condensates up to dimension 6.
|
|
27
NARISON 2013A determines ${\mathit m}_{{{\mathit b}}}$ using HQET sum rules to order ${{\mathit \alpha}_{{{s}}}^{2}}$ (NNLO) and the ${{\mathit B}}$ meson mass and decay constant.
|
|
28
HOANG 2012 determine ${\mathit m}_{{{\mathit b}}}$ using non-relativistic sum rules for the ${{\mathit \Upsilon}}$ system at order ${{\mathit \alpha}_{{{s}}}^{2}}$ (NNLO) with renormalization group improvement.
|
|
29
NARISON 2012 determines ${\mathit m}_{{{\mathit b}}}$ using exponential sum rules for the vector current correlator to order ${{\mathit \alpha}_{{{s}}}^{3}}$, including the effect of gluon condensates up to dimension eight.
|
|
30
Determines ${\mathit m}_{{{\mathit b}}}$ to order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO), including the effect of gluon condensates up to dimension eight combining the methods of NARISON 2012 and NARISON 2012A.
|
|
31
NARISON 2012A determines ${\mathit m}_{{{\mathit b}}}$ using sum rules for the vector current correlator to order ${{\mathit \alpha}_{{{s}}}^{3}}$, including the effect of gluon condensates up to dimension eight.
|
|
32
MCNEILE 2010 determines ${\mathit m}_{{{\mathit b}}}$ by comparing order ${{\mathit \alpha}_{{{s}}}^{3}}$ (N3LO) perturbative results for the pseudo-scalar current to lattice simulations with ${{\mathit n}_{{{f}}}}$ = 2+1 sea-quarks by the HPQCD collaboration.
|
|
33
NARISON 2010 determines ${\mathit m}_{{{\mathit b}}}$ from ratios of moments of vector current correlators computed to order ${{\mathit \alpha}_{{{s}}}^{3}}$ and including the dimension-six gluon condensate. These values are taken from the erratum to that reference.
|
|
34
ABDALLAH 2008D determine ${{\overline{\mathit m}}_{{{b}}}}({{\mathit M}_{{{Z}}}}$) = $3.76$ $\pm1.0$ GeV from a leading order study of four-jet rates at LEP.
|
|
35
GUAZZINI 2008 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from a quenched lattice simulation of heavy meson masses. The $\pm0.08$ is an estimate of the quenching error.
|
|
36
DELLA-MORTE 2007 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from a computation of the spin-averaged ${{\mathit B}}$ meson mass using quenched lattice HQET at order 1/${{\mathit m}}$. The $\pm0.08$ is an estimate of the quenching error.
|
|
37
KUHN 2007 determine ${{\overline{\mathit m}}_{{{b}}}}({{\mathit \mu}}$ = 10 GeV) = $3.609$ $\pm0.025$ GeV and ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the bottom threshold region.
|
|
38
ABDALLAH 2006D determine ${\mathit m}_{{{\mathit b}}}({{\mathit M}_{{{Z}}}}$) = $2.85$ $\pm0.32$ GeV from ${{\mathit Z}}$-decay three-jet events containing a ${{\mathit b}}$-quark.
|
|
39
BOUGHEZAL 2006 $\overline{\rm{}MS}$ scheme result comes from the first moment of the hadronic production cross-section to order ${{\mathit \alpha}_{{{s}}}^{3}}$.
|
|
40
BUCHMUELLER 2006 determine ${{\mathit m}_{{{b}}}}$ and ${{\mathit m}_{{{c}}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
|
|
41
PINEDA 2006 $\overline{\rm{}MS}$ scheme result comes from a partial NNLL evaluation (complete at order ${{\mathit \alpha}_{{{s}}}^{2}}$ (NNLO)) of sum rules of the bottom production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
|
|
42
GRAY 2005 determines ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from a lattice computation of the ${{\mathit \Upsilon}}$ spectrum. The simulations have 2+1 dynamical light flavors. The ${{\mathit b}}$ quark is implemented using NRQCD.
|
|
43
AUBERT 2004X obtain ${\mathit m}_{{{\mathit b}}}$ from a fit to the hadron mass and lepton energy distributions in semileptonic ${{\mathit B}}$ decay. The paper quotes values in the kinetic scheme. The $\overline{\rm{}MS}$ value has been provided by the BABAR collaboration.
|
|
44
BAUER 2004 determine ${\mathit m}_{{{\mathit b}}}$, ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}−{\mathit m}_{{{\mathit c}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
|
|
45
HOANG 2004 determines ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from moments at order ${{\mathit \alpha}_{{{s}}}^{2}}$ of the bottom production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
|
|
46
MCNEILE 2004 use lattice QCD with dynamical light quarks and a static heavy quark to compute the masses of heavy-light mesons.
|
|
47
BAUER 2003 determine the b quark mass by a global fit to ${{\mathit B}}$ decay observables. The experimental data includes lepton energy and hadron invariant mass moments in semileptonic ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{{c}}}}{{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ decay, and the inclusive photon spectrum in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{{s}}}}{{\mathit \gamma}}$ decay. The theoretical expressions used are of order 1/m${}^{3}$, and $\alpha {}^{2}_{s}\beta _{0}$.
|
|
48
BORDES 2003 determines m$_{b}$ using QCD finite energy sum rules to order $\alpha {}^{2}_{s}$.
|
|
49
CORCELLA 2003 determines ${{\overline{\mathit m}}_{{{b}}}}$ using sum rules computed to order $\alpha {}^{2}_{s}$. Includes charm quark mass effects.
|
|
50
DEDIVITIIS 2003 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
|
|
51
EIDEMULLER 2003 determines ${{\overline{\mathit m}}_{{{b}}}}$ and ${{\overline{\mathit m}}_{{{c}}}}$ using QCD sum rules.
|
|
52
ERLER 2003 determines ${{\overline{\mathit m}}_{{{b}}}}$ and ${{\overline{\mathit m}}_{{{c}}}}$ using QCD sum rules. Includes recent BES data.
|
|
53
MAHMOOD 2003 determines ${{\mathit m}}{}^{1S}_{b}$ by a fit to the lepton energy moments in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{{c}}}}{{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ decay. The theoretical expressions used are of order 1/m${}^{3}$ and $\alpha {}^{2}_{s}\beta _{0}$. We have converted their result to the $\overline{\rm{}MS}$ scheme.
|
|
54
BRAMBILLA 2002 determine ${{\overline{\mathit m}}_{{{b}}}}({{\overline{\mathit m}}_{{{b}}}}$) from a computation of the ${{\mathit \Upsilon}{(1S)}}$ mass to order ${{\mathit \alpha}_{{{s}}}^{4}}$, including finite ${{\mathit m}_{{{c}}}}$ corrections.
|
|
55
PENIN 2002 determines ${{\overline{\mathit m}}_{{{b}}}}$ from the spectrum of the ${{\mathit \Upsilon}}$ system.
|