CONSTRAINED FIT INFORMATION show precise values?

 
An overall fit to the total width, partial width, uses 10 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 10.7 for 8 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x2 100
 x3 -100 100
 Γ 15 -15 100
   x2  x3 Γ
 
    Mode Rate (MeV)Scale factor

Γ2  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{{\mathit \pi}^{0}}$ ($99.955$ $\pm0.005$) $ \times 10^{-2}$ 2.2
Γ3  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{{\mathit \gamma}}$ ($4.5$ $\pm0.5$) $ \times 10^{-4}$ 2.2

 
An overall fit to the total width, partial width, and 7 branching ratios uses 21 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi {}^{2}$ = 9.5 for 13 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x6 100
 x7 -100 100
 x8 -5 0 100
 x9 -1 0 1 100
 x10 -1 0 0 0 100
 x11 2 -3 0 0 0 100
 x12 0 0 -6 -9 0 0 100
 x14 -1 0 0 0 0 0 0 100
 Γ 0 0 3 5 0 0 -54 0 100
   x6  x7  x8  x9  x10  x11  x12  x14 Γ
 
    Mode Rate (MeV)Scale factor

Γ6  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($98.92$ $\pm0.16$) $ \times 10^{-2}$ 
Γ7  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$ ($9.9$ $\pm1.6$) $ \times 10^{-3}$ 
Γ8  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($4.7$ $\pm0.8$) $ \times 10^{-4}$ 1.7
Γ9  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$ ($3.00$ $\pm0.21$) $ \times 10^{-4}$ 
Γ10  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($4.5$ $\pm0.8$) $ \times 10^{-5}$ 
Γ11  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($4.55$ $\pm0.28$) $ \times 10^{-5}$ 
Γ12  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($4.72$ $\pm0.05$) $ \times 10^{-5}$ 
Γ14  ${{\mathit \rho}{(770)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.8$ $\pm0.9$) $ \times 10^{-5}$