FIT INFORMATION show precise values?

 
A multiparticle fit to ${{\mathit B}^{\pm}}$, ${{\mathit \eta}_{{{c}}}{(1S)}}$, ${{\mathit J / \psi}{(1S)}}$, ${{\mathit \psi}{(2S)}}$ and ${{\mathit h}_{{{c}}}{(1P)}}$ with the total width, 10 combinations of partial widths obtained from integrated cross section, and 38 branching ratios uses 113 measurements to determine 19 parameters. The overall fit has a $\chi {}^{2}$ = 184.6 for 94 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x270 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$1 -14 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$6 -14 14 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$9 -17 11 13 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$16 -7 7 8 8 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$18 -11 9 11 11 7 100
 x${{\mathit h}_{{{c}}}{(1P)}}$30 15 -8 -8 -7 -4 -6 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$37 -43 25 25 22 12 17 -28 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$38 -22 13 13 11 6 9 -18 51 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$41 -8 7 7 6 4 5 -24 15 8 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$45 -19 5 5 5 2 3 -9 12 6 4 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$48 -16 13 17 17 10 15 -10 26 13 8 5 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$51 -43 19 20 20 11 16 -16 39 20 11 11 24 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$53 -49 7 7 8 4 5 -11 22 11 5 10 8 21 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$54 -18 5 7 7 4 6 -4 12 6 3 4 10 13 9 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$59 34 -38 -35 -27 -16 -22 20 -63 -32 -17 -12 -31 -47 -17 -11 100
 x${{\mathit \psi}{(2S)}}$184 2 -1 -1 -1 -1 -1 2 -3 -2 -3 -1 -5 -3 -1 -1 3 100
 x${{\mathit J / \psi}{(1S)}}$245 26 -17 -28 -32 -19 -30 14 -38 -19 -13 -7 -46 -40 -13 -20 39 3 100
 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$ 1 -1 -1 -1 0 -1 0 -2 -1 0 0 -1 1 0 0 -20 0 1 100
   x270  x${{\mathit \eta}_{{{c}}}{(1S)}}$1  x${{\mathit \eta}_{{{c}}}{(1S)}}$6  x${{\mathit \eta}_{{{c}}}{(1S)}}$9  x${{\mathit \eta}_{{{c}}}{(1S)}}$16  x${{\mathit \eta}_{{{c}}}{(1S)}}$18  x${{\mathit h}_{{{c}}}{(1P)}}$30  x${{\mathit \eta}_{{{c}}}{(1S)}}$37  x${{\mathit \eta}_{{{c}}}{(1S)}}$38  x${{\mathit \eta}_{{{c}}}{(1S)}}$41  x${{\mathit \eta}_{{{c}}}{(1S)}}$45  x${{\mathit \eta}_{{{c}}}{(1S)}}$48  x${{\mathit \eta}_{{{c}}}{(1S)}}$51  x${{\mathit \eta}_{{{c}}}{(1S)}}$53  x${{\mathit \eta}_{{{c}}}{(1S)}}$54  x${{\mathit \eta}_{{{c}}}{(1S)}}$59  x${{\mathit \psi}{(2S)}}$184  x${{\mathit J / \psi}{(1S)}}$245 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$
 
    Mode Rate (MeV)Scale factor

Γ270  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \eta}_{{{c}}}}{{\mathit K}^{+}}$ ($1.10$ $\pm0.07$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$1  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}}{{\mathit \pi}}$ ($2.0$ $\pm0.4$) $ \times 10^{-2}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$6  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}}{{\overline{\mathit K}}^{*}{(892)}}$ ($7.0$ $\pm1.2$) $ \times 10^{-3}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$9  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.8$ $\pm0.4$) $ \times 10^{-3}$ 2.3
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$16  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \omega}}$ ($2.7$ $\pm0.9$) $ \times 10^{-3}$ 2.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$18  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit f}_{{{2}}}{(1270)}}{{\mathit f}_{{{2}}}{(1270)}}$ ($1.08$ $\pm0.27$) $ \times 10^{-2}$ 
Γ${{\mathit h}_{{{c}}}{(1P)}}$30  ${{\mathit h}_{{{c}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($6.0$ $\pm0.4$) $ \times 10^{-1}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$37  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ ($7.1$ $\pm0.4$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$38  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \eta}}$ ($1.32$ $\pm0.15$) $ \times 10^{-2}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$41  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.3$ $\pm1.8$) $ \times 10^{-3}$ 1.9
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$45  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit K}^{+}}{{\mathit K}^{-}}$) ($1.4$ $\pm0.4$) $ \times 10^{-3}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$48  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($9.6$ $\pm1.5$) $ \times 10^{-3}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$51  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($1.33$ $\pm0.11$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$53  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.7$ $\pm0.5$) $ \times 10^{-3}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$54  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.10$ $\pm0.28$) $ \times 10^{-3}$ 1.5
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$59  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($1.66$ $\pm0.13$) $ \times 10^{-4}$ 1.2
Γ${{\mathit \psi}{(2S)}}$184  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($3.6$ $\pm0.5$) $ \times 10^{-3}$ 1.3
Γ${{\mathit J / \psi}{(1S)}}$245  ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($1.41$ $\pm0.14$) $ \times 10^{-2}$ 1.3

 
An overall fit to and 21 branching ratios uses 66 measurements to determine 13 parameters. The overall fit has a $\chi {}^{2}$ = 68.7 for 53 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x10 100
 x13 33 100
 x57 0 0 100
 x114 0 0 5 100
 x156 0 0 1 14 100
 x311 0 0 0 0 0 100
 x316 0 0 0 0 0 0 100
 x334 0 0 0 0 0 86 0 100
 x347 0 0 0 0 0 38 0 33 100
 x387 0 0 0 0 0 0 0 0 0 100
 x448 0 0 0 0 0 0 0 0 0 8 100
 x639 0 0 0 0 0 14 0 12 5 0 0 100
 x646 0 0 0 0 0 0 5 0 0 0 0 0 100
   x10  x13  x57  x114  x156  x311  x316  x334  x347  x387  x448  x639  x646
 
    Mode Fraction (Γi / Γ)Scale factor

Γ10  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ ($5.60$ $\pm0.26$) $ \times 10^{-2}$ 1.5
Γ13  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{{\tau}}}}$ ($1.88$ $\pm0.20$) $ \times 10^{-2}$ 
Γ57  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}$ ($4.61$ $\pm0.10$) $ \times 10^{-3}$ 
Γ114  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.5$ $\pm2.0$) $ \times 10^{-3}$ 3.6
Γ156  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}_{{{1}}}{(2420)}^{0}}{{\mathit \pi}^{+}}$ ${\times }$ B( ${{\overline{\mathit D}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$)  ($2.5$ ${}^{+1.6}_{-1.4}$) $ \times 10^{-4}$ 3.8
Γ311  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}$ ($1.020$ $\pm0.019$) $ \times 10^{-3}$ 
Γ316  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{+}}$ ($1.43$ $\pm0.08$) $ \times 10^{-3}$ 
Γ334  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}$ ($3.92$ $\pm0.09$) $ \times 10^{-5}$ 
Γ347  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{+}}$ ($6.24$ $\pm0.21$) $ \times 10^{-4}$ 
Γ387  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}$ ($2.39$ $\pm0.06$) $ \times 10^{-5}$ 
Γ448  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($1.32$ $\pm0.17$) $ \times 10^{-6}$ 1.2
Γ639  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($4.53$ $\pm0.35$) $ \times 10^{-7}$ 1.8
Γ646  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($9.6$ $\pm1.0$) $ \times 10^{-7}$