CONSTRAINED FIT INFORMATION show precise values?

 
An overall fit to and 15 branching ratios uses 49 measurements and one constraint to determine 10 parameters. The overall fit has a $\chi {}^{2}$ = 48.9 for 40 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2 24 100
 x3 -18 -4 100
 x4 -93 -55 1 100
 x5 7 16 -1 -12 100
 x6 -1 0 0 0 0 100
 x7 0 0 0 0 0 0 100
 x9 -28 -59 5 44 -28 0 0 100
 x13 1 4 0 -2 1 0 0 -2 100
   x1  x2  x3  x4  x5  x6  x7  x9  x13
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($89.2$ $\pm0.7$) $ \times 10^{-2}$ 
Γ2  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($8.33$ $\pm0.25$) $ \times 10^{-2}$ 2.1
Γ3  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.53$ $\pm0.12$) $ \times 10^{-2}$ 1.2
Γ4  ${{\mathit \omega}{(782)}}$ $\rightarrow$ neutrals (excluding ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ) ($7$ ${}^{+7}_{-5}$) $ \times 10^{-3}$ 1.1
Γ5  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$ ($4.5$ $\pm0.4$) $ \times 10^{-4}$ 1.1
Γ6  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.7$ $\pm0.6$) $ \times 10^{-4}$ 
Γ7  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($1.34$ $\pm0.18$) $ \times 10^{-4}$ 1.5
Γ9  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.41$ $\pm0.19$) $ \times 10^{-5}$ 1.8
Γ13  ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($6.7$ $\pm1.1$) $ \times 10^{-5}$