BOTTOM BARYONS
($\mathit B$ = $-1$)
${{\mathit \Lambda}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{+}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit b}}$
${{\mathit \Xi}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Xi}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Omega}_{{{b}}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE search

${{\mathit \Lambda}_{{{b}}}^{0}}$ $I(J^P)$ = $0(1/2^{+})$ 

In the quark model, a ${{\mathit \Lambda}_{{{b}}}^{0}}$ is an isospin-0 ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ state. The lowest ${{\mathit \Lambda}_{{{b}}}^{0}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or $\mathit P$ have actually been measured.
${\mathit \tau}_{{{\mathit \Lambda}_{{{b}}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ MEAN LIFE RATIO
${\mathit \tau}_{{{\mathit \Lambda}_{{{b}}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ (direct measurements)   $0.964 \pm0.007$  
${{\mathit \Lambda}_{{{b}}}^{0}}$ ${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ Production Asymmetry
${{\mathit A}}_{P}({{\mathit \Lambda}_{{{b}}}^{0}}$)   $0.014 \pm0.004$  (S = 1.8)
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything) and B( ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$-Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit \Lambda}_{{{b}}}}$ $\rightarrow$ ${{\overline{\mathit \Lambda}}_{{{c}}}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{b}}}^{0}}$)  $(5.8\pm{0.8})\times 10^{-5}$ 1740
$\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}$  1740
$\Gamma_{3}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{{\mathit \phi}}$  1010
$\Gamma_{4}$ ${{\mathit \psi}{(2S)}}{{\mathit \Lambda}}$  1298
$\Gamma_{5}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit \pi}^{-}}$  $(6.3\pm{0.6})\times 10^{-4}$ 2370
$\Gamma_{6}$ ${{\mathit p}}{{\mathit D}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$  $(2.8\pm{0.4})\times 10^{-4}$ 2332
$\Gamma_{7}$ ${{\mathit p}}{{\mathit D}^{*}{(2010)}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$  $(5.3\pm{1.0})\times 10^{-4}$ 2277
$\Gamma_{8}$ ${{\mathit \Lambda}_{{{c}}}{(2860)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$ 
$\Gamma_{9}$ ${{\mathit \Lambda}_{{{c}}}{(2880)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$ 
$\Gamma_{10}$ ${{\mathit \Lambda}_{{{c}}}{(2940)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$ 
$\Gamma_{11}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit K}^{-}}$  $(4.6\pm{0.8})\times 10^{-5}$ 2269
$\Gamma_{12}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ 
$\Gamma_{13}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ 
$\Gamma_{14}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit \pi}^{-}}$  $(2.6^{+0.5}_{-0.4})\times 10^{-5}$ 1755
$\Gamma_{15}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit J / \psi}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  $(1.6\pm{0.8})\times 10^{-6}$
$\Gamma_{16}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit K}^{-}}$  $(3.2^{+0.6}_{-0.5})\times 10^{-4}$ 1589
$\Gamma_{17}$ ${{\mathit J / \psi}}{{\mathit \Xi}^{-}}{{\mathit K}^{+}}$  1329
$\Gamma_{18}$ ${{\mathit p}}{{\mathit \eta}_{{{c}}}{(1S)}}{{\mathit K}^{-}}$  $(1.06\pm{0.26})\times 10^{-4}$ 1670
$\Gamma_{19}$ ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}{(4312)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}_{{{c}}}{(1S)}}$  $<2.5\times 10^{-5}$ CL=95%
$\Gamma_{20}$ ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}{(4380)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1] $(2.7\pm{1.4})\times 10^{-5}$
$\Gamma_{21}$ ${{\mathit P}_{{{c}}}{(4450)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c}}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1] $(1.3\pm{0.4})\times 10^{-5}$
$\Gamma_{22}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$  $(7.6^{+1.5}_{-1.3})\times 10^{-5}$ 1242
$\Gamma_{23}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$  $(5.0^{+1.3}_{-1.1})\times 10^{-6}$ 1462
$\Gamma_{24}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$  $(7.7^{+1.6}_{-1.4})\times 10^{-5}$ 1198
$\Gamma_{25}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$  $(4.8\pm{1.9})\times 10^{-6}$ 1427
$\Gamma_{26}$ ${{\mathit p}}{{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}$  $(6.6^{+1.3}_{-1.1})\times 10^{-5}$ 1410
$\Gamma_{27}$ ${{\mathit p}}{{\mathit \psi}{(2S)}}{{\mathit K}^{-}}$  $(6.6^{+1.2}_{-1.0})\times 10^{-5}$ 1063
$\Gamma_{28}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit p}}{{\mathit K}^{-}}$  $(2.8\pm{1.2})\times 10^{-5}$ 837
$\Gamma_{29}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit \Lambda}{(1520)}}$  $(1.6\pm{0.8})\times 10^{-5}$ 721
$\Gamma_{30}$ ${{\mathit \psi}{(2S)}}{{\mathit p}}{{\mathit \pi}^{-}}$  $(7.5^{+1.6}_{-1.4})\times 10^{-6}$ 1320
$\Gamma_{31}$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$  $(1.3\pm{0.4})\times 10^{-5}$ 2693
$\Gamma_{32}$ ${{\mathit p}}{{\mathit K}^{0}}{{\mathit K}^{-}}$  $<3.5\times 10^{-6}$ CL=90%2639
$\Gamma_{33}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$  $(4.9\pm{0.4})\times 10^{-3}$ S=1.2 2342
$\Gamma_{34}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{-}}$  $(3.56\pm{0.28})\times 10^{-4}$ S=1.2 2314
$\Gamma_{35}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit a}_{{{1}}}{(1260)}^{-}}$  seen 2153
$\Gamma_{36}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}^{-}}$  $(4.6\pm{0.6})\times 10^{-4}$ 1886
$\Gamma_{37}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}_{{{s}}}^{-}}$  $(1.10\pm{0.10})\%$ 1833
$\Gamma_{38}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}_{{{s}}}^{*-}}$  $(1.83\pm{0.18})\%$ 1748
$\Gamma_{39}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$  $(2.13\pm{0.20})\times 10^{-3}$ 1581
$\Gamma_{40}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\overline{\mathit D}}^{*0}}{{\mathit K}^{-}}$  $(6.6\pm{0.7})\times 10^{-3}$ 1471
$\Gamma_{41}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$  $(7.6\pm{1.1})\times 10^{-3}$ S=1.1 2323
$\Gamma_{42}$ ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(3.4\pm{1.4})\times 10^{-4}$ 2210
$\Gamma_{43}$ ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(3.3\pm{1.3})\times 10^{-4}$ 2193
$\Gamma_{44}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{{c}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$  $(5.7\pm{2.2})\times 10^{-4}$ 2265
$\Gamma_{45}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{{c}}}^{++}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}$  $(3.2\pm{1.5})\times 10^{-4}$ 2265
$\Gamma_{46}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit D}^{-}}{{\mathit K}^{-}}$  $(6.0\pm{0.8})\times 10^{-4}$ 1448
$\Gamma_{47}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit D}^{*-}}{{\mathit K}^{-}}$  $(1.36\pm{0.22})\times 10^{-3}$ 1324
$\Gamma_{48}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}{{\mathit D}^{-}}{{\mathit K}^{-}}$  $(2.8\pm{0.5})\times 10^{-4}$ 1392
$\Gamma_{49}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}{{\mathit D}^{*-}}{{\mathit K}^{-}}$  $(5.4\pm{1.1})\times 10^{-4}$ 1262
$\Gamma_{50}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{-}}$  $(1.02\pm{0.11})\times 10^{-3}$ 2184
$\Gamma_{51}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{-}}$  $(2.63\pm{0.27})\times 10^{-4}$ 1805
$\Gamma_{52}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{{c}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$  $(2.3\pm{0.5})\times 10^{-5}$
$\Gamma_{53}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$  $(3.1\pm{0.7})\times 10^{-5}$
$\Gamma_{54}$ ${{\mathit \Lambda}}{{\mathit K}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$  2591
$\Gamma_{55}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything [2] $(10.9\pm{2.2})\%$
$\Gamma_{56}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$  $(6.2^{+1.4}_{-1.3})\%$ 2345
$\Gamma_{57}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{{\tau}}}}$  $(1.9\pm{0.5})\%$ 1933
$\Gamma_{58}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$  $(5.6\pm{3.1})\%$ 2335
$\Gamma_{59}$ ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$  $(7.9^{+4.0}_{-3.5})\times 10^{-3}$ 2212
$\Gamma_{60}$ ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$  $(1.3^{+0.6}_{-0.5})\%$ 2195
$\Gamma_{61}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$  2272
$\Gamma_{62}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$  2272
$\Gamma_{63}$ ${{\mathit p}}{{\mathit h}^{-}}$ [3] $<2.3\times 10^{-5}$ CL=90%2730
$\Gamma_{64}$ ${{\mathit p}}{{\mathit \pi}^{-}}$  $(4.6\pm{0.8})\times 10^{-6}$ 2730
$\Gamma_{65}$ ${{\mathit p}}{{\mathit K}^{-}}$  $(5.5\pm{1.0})\times 10^{-6}$ 2709
$\Gamma_{66}$ ${{\mathit p}}{{\mathit D}_{{{s}}}^{-}}$  $(1.25\pm{0.13})\times 10^{-5}$ 2364
$\Gamma_{67}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{{\mu}}}}$  $(4.1\pm{1.0})\times 10^{-4}$ 2730
$\Gamma_{68}$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  $(1.08\pm{0.28})\times 10^{-6}$ 2695
$\Gamma_{69}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  $(6.9\pm{2.5})\times 10^{-8}$ 2720
$\Gamma_{70}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$  $(3.1\pm{0.6})\times 10^{-7}$ 2708
$\Gamma_{71}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  $(2.6^{+0.5}_{-0.4})\times 10^{-7}$ 2685
$\Gamma_{72}$ ${{\mathit \Lambda}{(1520)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ 
$\Gamma_{73}$ ${{\mathit \Lambda}}{{\mathit \gamma}}$  $(7.1\pm{1.7})\times 10^{-6}$ 2699
$\Gamma_{74}$ ${{\overline{\mathit p}}}{{\mathit K}^{-}}{{\mathit \gamma}}$  2709
$\Gamma_{75}$ ${{\mathit \Lambda}{(1405)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{76}$ ${{\mathit \Lambda}{(1520)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{77}$ ${{\mathit \Lambda}{(1600)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{78}$ ${{\mathit \Lambda}{(1670)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{79}$ ${{\mathit \Lambda}{(1690)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{80}$ ${{\mathit \Lambda}{(1800)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{81}$ ${{\mathit \Lambda}{(1810)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{82}$ ${{\mathit \Lambda}{(1820)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{83}$ ${{\mathit \Lambda}{(1830)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{84}$ ${{\mathit \Lambda}{(1890)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{85}$ ${{\mathit \Lambda}{(2100)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{86}$ ${{\mathit \Lambda}{(2110)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{87}$ ${{\mathit \Lambda}{(2530)}^{0}}{{\mathit \gamma}}$ 
$\Gamma_{88}$ (${{\overline{\mathit p}}}{{\mathit K}^{-}}$ ) nonresonant ${{\mathit \gamma}}$  2709
$\Gamma_{89}$ ${{\mathit \Lambda}}{{\mathit \eta}}$  $(9^{+7}_{-5})\times 10^{-6}$ 2670
$\Gamma_{90}$ ${{\mathit \Lambda}}{{\mathit \eta}^{\,'}{(958)}}$  $<3.1\times 10^{-6}$ CL=90%2610
$\Gamma_{91}$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(4.6\pm{1.9})\times 10^{-6}$ 2692
$\Gamma_{92}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$  $(5.7\pm{1.2})\times 10^{-6}$ 2660
$\Gamma_{93}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $(1.61\pm{0.22})\times 10^{-5}$ 2605
$\Gamma_{94}$ ${{\mathit \Lambda}}{{\mathit D}^{+}}{{\mathit D}^{-}}$  $(1.24\pm{0.35})\times 10^{-4}$ 1387
$\Gamma_{95}$ ${{\mathit \Lambda}}{{\mathit \phi}}$  $(9.8\pm{2.6})\times 10^{-6}$ 2599
$\Gamma_{96}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(2.12\pm{0.21})\times 10^{-5}$ 2715
$\Gamma_{97}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$  $(4.1\pm{0.6})\times 10^{-6}$ 2612
$\Gamma_{98}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(5.1\pm{0.5})\times 10^{-5}$ 2675
$\Gamma_{99}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $(1.27\pm{0.13})\times 10^{-5}$ 2524
    fit information