LEPTONS
INSPIRE search

Neutrino Mixing  

See related review:
Introductory Text to Neutrino Mixing
(A) Neutrino fluxes and event ratios
Events (observed/expected) from accelerator ${{\mathit \nu}_{{{\mu}}}}$ experiments.
Events (observed/expected) from reactor ${{\overline{\mathit \nu}}_{{{e}}}}$ experiments.
Atmospheric neutrinos
R(${{\mathit \mu}}/{{\mathit e}}$) = (Measured Ratio ${{\mathit \mu}}/{{\mathit e}}$) $/$ (Expected Ratio ${{\mathit \mu}}/{{\mathit e}}$)
R(${{\mathit \nu}_{{{\mu}}}}$) = (Measured Flux of ${{\mathit \nu}_{{{\mu}}}}$) $/$ (Expected Flux of ${{\mathit \nu}_{{{\mu}}}}$)
R(${{\mathit \mu}}$/total) = (Measured Ratio ${{\mathit \mu}}$/total) $/$ (Expected Ratio ${{\mathit \mu}}$/total)
$\mathit N_{{\mathrm {up}}}({{\mathit \mu}})/\mathit N_{{\mathrm {down}}}({{\mathit \mu}}$)
$\mathit N_{{\mathrm {up}}}({{\mathit e}})/\mathit N_{{\mathrm {down}}}({{\mathit e}}$)
R(up/down; ${{\mathit \mu}}$) = (Measured up/down; ${{\mathit \mu}}$) $/$ (Expected up/down; ${{\mathit \mu}}$)
N(${{\mathit \mu}^{+}})/N({{\mathit \mu}^{-}}$)
R(${{\mathit \mu}^{+}}/{{\mathit \mu}^{-}}$) = (Measured N(${{\mathit \mu}^{+}})/N({{\mathit \mu}^{-}}$)) $/$ (Expected N(${{\mathit \mu}^{+}})/N({{\mathit \mu}^{-}}$))
Solar neutrinos
${{\mathit \nu}_{{{e}}}}$ Capture Rates from Radiochemical Experiments
$\phi _{\mathit ES}$ (${}^{8}\mathrm {B}$)
$\phi _{\mathit CC}$ (${}^{8}\mathrm {B}$)
$\phi _{\mathit NC}$ (${}^{8}\mathrm {B}$)
$\phi _{{{\mathit \nu}_{{{\mu}}}}+{{\mathit \nu}_{{{\tau}}}}}$ (${}^{8}\mathrm {B}$)
Total Flux of Active ${{\mathit p}}{{\mathit p}}$ Solar Neutrinos
Total Flux of Active ${}^{7}\mathrm {Be}$ Solar Neutrinos
Total Flux of Active ${{\mathit p}}{{\mathit e}}{{\mathit p}}$ Solar Neutrinos
Total Flux of Active ${}^{8}\mathrm {B}$ Solar Neutrinos
Total Flux of Active CNO Solar Neutrinos
Total Flux of Active hep Solar Neutrinos
Day-Night Asymmetry (${}^{8}\mathrm {B}$)   $0.033 \pm0.011$  
$\phi _{\mathit ES}$ (${}^{7}\mathrm {Be}$)
$\phi _{\mathit ES}$ (${{\mathit p}}{{\mathit e}}{{\mathit p}}$)
$\phi _{\mathit ES}$ (CNO)
$\phi _{ES}({{\mathit p}{\mathit p}}$)
$\phi _{CC}({{\mathit p}{\mathit p}}$)
$\phi _{\mathit ES}$ (hep)
$\phi _{{{\overline{\mathit \nu}}_{{{e}}}}}$ (${}^{8}\mathrm {B}$)
(B) Three-neutrino mixing parameters
sin$^2(\theta _{12})$   $0.307 \pm0.013$  
$\Delta $m${}^{2}_{21}$   $(7.53 \pm0.18) \times 10^{-5}$ eV${}^{2}$ 
sin$^2(\theta _{23})$   $0.558 {}^{+0.015}_{-0.021}$    ...
$\Delta $m${}^{2}_{32}$   $0.002455 \pm0.000028$ eV${}^{2}$   ...
sin$^2(\theta _{13})$   $0.0219 \pm0.0007$  (S = 1.2)
$\mathit CP$ violating phase
$\delta $, $\mathit CP$ violating phase   $1.19 \pm0.22$ ${{\mathit \pi}}$ rad (S = 1.2)
(C) Other neutrino mixing results
$\Delta \mathit m{}^{2}$ for sin$^2(2{}\theta )$ = 1 ( ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$)
sin$^2(2{}\theta )$ for ``Large'' $\Delta \mathit m{}^{2}$ ( ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$)
$\Delta \mathit m{}^{2}$ for sin$^2(2{}\theta )$ = 1 ( ${{\overline{\mathit \nu}}_{{{\mu}}}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{{e}}}}$)
sin$^2(2{}\theta )$ for ``Large'' $\Delta \mathit m{}^{2}$ ( ${{\overline{\mathit \nu}}_{{{\mu}}}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{{e}}}}$)
Sterile neutrino limits
$\Delta \mathit m{}^{2}$ for sin$^2(2{}\theta )$ = 1 (${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{s}}}}$)
Search for ${{\mathit \nu}_{{{\mu}}}}$ or ${{\mathit \nu}_{{{e}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{s}}}}$
$\mathit CPT$ tests
$\langle \Delta {{\mathit m}^{2}}_{\mathrm {21}}−\Delta {{\overline{\mathit m}}}{}^{2}_{21}\rangle $   $<1.1 \times 10^{-4}$ eV${}^{2}$  CL=99.7%
$\langle \Delta {{\mathit m}^{2}}_{\mathrm {32}}−\Delta {{\overline{\mathit m}}}{}^{2}_{32}\rangle $   $(-1.2 \pm2.5) \times 10^{-4}$ eV${}^{2}$